Answer:
The richer source of calcium is fluorite.
Explanation:
Percentage of element in compound :

1. Dolomite is a carbonate of magnesium and calcium:
Given mass of dolomite = 7.81 g
Mass of calcium present in given mass of dolomite = 1.70 g
Percentage of calcium in Dolomite:

2. Fluorite is a mineral of calcium and fluorine:
Given mass of fluorite = 2.76 g
Mass of fluorine present in given mass of fluorite = 1.34 g
Percentage of fluorine in fluorite :

Percentage of calcium in fluorite = 100% - 48.55 % = 51.45%
Percentage of calcium in fluorite > Percentage of calcium in Dolomite
51.455 > 21.77%
So, the richer source of calcium is fluorite.
Answer:
3.1% is the fraction of the sample after 28650 years
Explanation:
The isotope decay follows the equation:
Ln[A] = -kt + Ln[A]₀
<em>Where [A] could be taken as fraction of isotope after time t, k is decay constant and [A]₀ is initial fraction of the isotope = 1</em>
<em />
k could be obtained from Half-Life as follows:
K = Ln 2 / Half-life
K = ln 2 / 5730 years
K = 1.2097x10⁻⁴ years⁻¹
Replacing in isotope decay equation:
Ln[A] = -1.2097x10⁻⁴ years⁻¹*28650 years + Ln[1]
Ln[A] = -3.4657
[A] = 0.0313 =
<h3>3.1% is the fraction of the sample after 28650 years</h3>
<em />
Answer:

Explanation:
mass of Fe = 55.85 g
Molar mass of Fe = 55.85 g/mol
<u>Moles of Fe = 55.85 / 55.85 = 1</u>
mass of Cl = 106.5 g
Molar mass of Cl = 35.5 g/mol
Moles of Cl = 106.5 / 35.5 = 3
Taking the simplest ratio for Fe and Cl as:
1 : 3
The empirical formula is = 
Answer: Option (5) is the correct answer.
Explanation:
It is known that the ground state electronic configuration of silicon is
.
And, we know that when an atom tends to gain an electron then it acquires a negative charge and when an atom tends to lose an electron then it acquires a positive charge.
As
has a +4 charge which means that it has lost 4 electrons. Hence, the electronic configuration of
is
.
According to the Aufbau principle, in the ground state of an atom or ion the electrons fill atomic orbitals of the lowest energy levels first, before filling the higher energy levels.
As 2p orbital is filled after the filling of 2s orbital.
Therefore, we can conclude that 2p orbital will be occupied by the electrons of highest energy for the
ground-state ion.