Answer: If the intermolecular forces are weak, then molecules can break out of the solid or liquid more easily into the gas phase. Consider two different liquids, one polar one not, contained in two separate boxes. We would expect the molecules to more easily break away from the bulk for the non-polar case. If the molecules are held tightly together by strong intermolecular forces, few of the molecules will have enough kinetic energy to separate from each other. They will stay in the liquid phase, and the rate of evaporation will be low. ... They will escape from the liquid phase, and the rate of evaporation will be high. To make water evaporate, energy has to be added. The water molecules in the water absorb that energy individually. Due to this absorption of energy the hydrogen bonds connecting water molecules to one another will break.
Hope this helps..... Stay safe and have a Merry Christmas!!!!!!!! :D
Answer:
a)M=0.20/(0.335*0.1025)= 0.20/ 0.034 = 5.88 g/mol
b) if 0.100g is used instead of 0.200g
M = 0.1 / 0.034 = 2.94 hence the molar mass will be too low
Explanation:
0.2000 gHZ gives 100ml acid solution
33.5 ml of 0.1025 M NaOH is required to prepare it
the moles = mass / molar mass
mass = 0.200 gHZ
moles = 0.0335*100 * 0.1025 = 0.034
therefore molar mass = mass / moles
M=0.20/(0.335*0.1025)= 0.20/ 0.034 = 5.88
if 0.100g is used instead of 0.200g
M = 0.1 / 0.034 = 2.94 hence the molar mass will be too low
Answer:
Watch the attached image, please.
Explanation:
To complete the Lewis structure for this covalent compound, you have to draw all the atoms with their valence electrons.
The drew has the nitrogen in the center and the fluoride and oxygen in the sides.
Each one of these atoms has to complete the octet rule, which is the ruler who says that all the atoms want to reach to have eight electrons to feel "stable".
For that reason, you have to arrange the atoms to comply with this rule.
Mg is magnesium. NO3 is nitrate. This gives you magnesium nitrate as an answer.