Answer:
The specific heat for the metal is 0.466 J/g°C.
Explanation:
Given,
Q = 1120 Joules
mass = 12 grams
T₁ = 100°C
T₂ = 300°C
The specific heat for the metal can be calculated by using the formula
Q = (mass) (ΔT) (Cp)
ΔT = T₂ - T₁ = 300°C - 100°C = 200°C
Substituting values,
1120 = (12)(200)(Cp)
Cp = 0.466 J/g°C.
Therefore, specific heat of the metal is 0.466 J/g°C.
Answer:
And we have to calculate the number of moles of sucrose present in a lb mass of sucrose: Moles of sucrose=454⋅g342.30⋅g⋅mol−1=1.33⋅mol .
Explanation:
<u>Brainliest</u><u> </u><u>Answer </u><u>Pls</u>
Answer:
No
Explanation:
No, his mass remains the same no matter where he is in the universe.
But then again the moon has less gravitational pull, therefore your weight and mass will be smaller in space and on the moon than on earth
I hope this was helpful! ;)
Answer: The force of attraction occurring between two masses.