Answer:
a colloid and a solution
Explanation:
When solute particles completely dissolve in a solvent, a true solution is formed. The solute particles in this case are so little that they can not be seen with naked eyes. A true solution does not scatter rays of light.
In a false solution, the solute particles are larger than the solute particles in true solutions but are not large enough to be seen with naked eyes. False solutions scatter rays of light. False solutions are also called colloids.
The major difference between a solution and a colloid is that colloids scatter light rays (Tyndall effect) while a true solution does not scatter light rays.
The dichotomous key is not given here, however, the correct dichotomous key is as follows:
step- 1a cell has a nucleus and organelles - go to step 2
1b cell has no nucleus or organelles - bacterial cell
step- 2a cell has a cell wall - go to step 3
2b cell has no cell wall - animal cell
step- 3a cell has chloroplasts - plant cell
3b cell has no chloroplasts - fungal cell
Using this dichotomous key the cell can be identified as - Fungal cell.
A dichotomous key is an essential scientific tool that is used to find out the various kinds of organisms on their observable traits. Dichotomous keys have a series of statements with two different choices in each step that will take the student or user to the correct identification.
Identification of the given cell:
1. Follow step 1.
- If cells have a nucleus and organelles - yes then go to step 2
2. follow step 2.
- 2a. if cell has a cell wall - yes go to step 3
3. follow step 3.
- 3a. if cell has chloroplasts - no then fungal cell
Fungal cells have a nucleus and cell organelles enclosed with a cell wall around the plasma membrane but do not have chloroplast.
Thus, Using this dichotomous key the cell can be identified as - Fungal cell.
Learn more about fungal cells:
brainly.com/question/14470940
Answer:
a) 24.7 mol
b) 790 g
Explanation:
Step 1: Given data
- Volume of the chamber (V): 200. L
- Room temperature (T): 23 °C
- Pressure of the gas (P): 3.00 atm
Step 2: Convert "T" to Kelvin
We will use the following expression.
K = °C + 273.15
K = 23°C + 273.15 = 296 K
Step 3: Calculate the moles (n) of oxygen
We will use the ideal gas equation.
P × V = n × R × T
n = P × V/R × T
n = 3.00 atm × 200. L/(0.0821 atm.L/mol.K) × 296 K = 24.7 mol
Step 4: Calculate the mass (m) corresponding to 24.7 moles of oxygen
The molar mass (M) of oxygen ga sis 32.00 g/mol. We will calculate the mass of oxygen using the following expression.
m = n × M
m = 24.7 mol × 32.00 g/mol = 790 g
Answer:
to see if something or someone has either a low or high temperature
Explanation:
because you wanna know if some has a fever so you dont get the coronna virus