1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
o-na [289]
3 years ago
12

A hot air balloon is moving vertically upwards at a velocity of 3m/s. A sandbag is dropped when the balloon reaches 150m. How lo

ng does the sandbag take to reach the ground and what is the maximum height it reaches?
Physics
1 answer:
gregori [183]3 years ago
6 0

This is a perfect opportunity to stuff all that data into the general equation for the height of an object that has some initial height, and some initial velocity, when it is dropped into free fall.

                       H(t)  =  (H₀)  +  (v₀ T)  +  (1/2 a T²)

 Height at any time 'T' after the drop =

                          (initial height) +

                                              (initial velocity) x (T) +
                                                                 (1/2) x (acceleration) x (T²) .

For the balloon problem ...

-- We have both directions involved here, so we have to define them:

     Upward  = the positive direction

                       Initial height = +150 m
                       Initial velocity = + 3 m/s

     Downward = the negative direction

                     Acceleration (of gravity) = -9.8 m/s²

Height when the bag hits the ground = 0 .

                 H(t)  =  (H₀)  +  (v₀ T)  +  (1/2 a T²)

                  
0    =  (150m) + (3m/s T) + (1/2 x -9.8 m/s² x T²)

                   -4.9 T²  +  3T  + 150  =  0

Use the quadratic equation:

                         T  =  (-1/9.8) [  -3 plus or minus √(9 + 2940)  ]

                             =  (-1/9.8) [  -3  plus or minus  54.305  ]

                             =  (-1/9.8) [ 51.305  or  -57.305 ]

                          T  =  -5.235 seconds    or    5.847 seconds .

(The first solution means that the path of the sandbag is part of
the same path that it would have had if it were launched from the
ground 5.235 seconds before it was actually dropped from balloon
while ascending.)

Concerning the maximum height ... I don't know right now any other
easy way to do that part without differentiating the big equation.
So I hope you've been introduced to a little bit of calculus.

                    H(t)  =  (H₀)  +  (v₀ T)  +  (1/2 a T²)

                  
H'(t)  =  v₀ + a T

The extremes of 'H' (height) correspond to points where h'(t) = 0 .

Set                                  v₀ + a T  =  0

                                      +3  -  9.8 T  =  0

Add 9.8 to each  side:   3               =  9.8 T

Divide each side by  9.8 :   T = 0.306 second

That's the time after the drop when the bag reaches its max altitude.

Oh gosh !  I could have found that without differentiating.

- The bag is released while moving UP at 3 m/s .

- Gravity adds 9.8 m/s of downward speed to that every second.
So the bag reaches the top of its arc, runs out of gas, and starts
falling, after
                       (3 / 9.8) = 0.306 second .

At the beginning of that time, it's moving up at 3 m/s.
At the end of that time, it's moving with zero vertical speed).
Average speed during that 0.306 second = (1/2) (3 + 0) =  1.5 m/s .

Distance climbed during that time = (average speed) x (time)

                                                           =  (1.5 m/s) x (0.306 sec)

                                                           =  0.459 meter  (hardly any at all)

     But it was already up there at 150 m when it was released.

It climbs an additional 0.459 meter, topping out at  150.459 m,
then turns and begins to plummet earthward, where it plummets
to its ultimate final 'plop' precisely  5.847 seconds after its release.  

We can only hope and pray that there's nobody standing at
Ground Zero at the instant of the plop.

I would indeed be remiss if were to neglect, in conclusion,
to express my profound gratitude for the bounty of 5 points
that I shall reap from this work.  The moldy crust and tepid
cloudy water have been delicious, and will not soon be forgotten.

You might be interested in
Mickey had three substances. He hit each of them with a hammer. A red
Verizon [17]

Answer:

A & D

Explanation:

:p

6 0
3 years ago
How does the density of a medium affectthe speed of a wave traveling through it
Mariana [72]
The denser the medium, the harder the sound struggles to travel through. The medium will determine how effectively the sound will travel, for example, large bodies of water has barely any sound for its density.
3 0
3 years ago
A skydiver is falling at constant velocity. If a force of 600 N is pulling down on the skydiver, how much force must be acting u
skelet666 [1.2K]

Well, if the skydiver is at constant velocity, than there’s no acceleration, as stated by Newton’s first law. Thus the total net force would equate to 0. In order to make this statement true, the answer would have to be exactly 600 N.

7 0
3 years ago
Read 2 more answers
Which of the following phenomena are due to the electric interaction? (Select all that apply.) surface tension in water friction
Eddi Din [679]

Answer:

Surface tension in water

Friction between tires and pavement

Dissolution of salt in water

Explanation:

Surface tension in water: It is due to the electrostatic force of attraction (cohesive force) between water molecules.

Friction between tires and pavement: It is due to the attractive force between tires and pavement.

Dissolution of salt in water: The ions of Na ^ + and Cl ^ - separate due to the strong attraction of water molecules.

5 0
3 years ago
pulse train with a frequency of 1 MHz is counted using a modulo-1024 ripple-counter built with J-K flip flops. For proper operat
omeli [17]

Answer:

The maximum permissible propagation delay per flip flop stage is<u> 100 </u>n sec

Explanation:

1024 ripple counter has 10 J-K flip flops(210 = 1024).  

So the total delay will be 10×x where x is the delay of each J-K flip flops.

The period of the clock pulse is 1× 10⁻⁶ s.

Now

10x <= 10⁻⁶ s

x <= 100 ns

x= 100 ns for prpoer operation.

pulse train with a frequency of 1 MHz is counted using a modulo-1024 ripple-counter built with J-K flip flops. For proper operation of the counter, the maximum permissible propagation delay per flip flop stage is <u>100 </u>n sec.

4 0
3 years ago
Other questions:
  • Heat gained or lost is mass times specific heat times change in temperature.
    14·2 answers
  • Laws made by the will of the people come through which body of the U.S. Government?
    13·2 answers
  • Why is electrical wiring usually made from copper ?
    14·1 answer
  • Which type of telescope focuses star light using mirrors?
    6·1 answer
  • 2 * 1.5 * (.850/2)^2A small ball with mass 1.50 kg is mounted on one end of a rod 0.850 m long and of negligible mass. The syste
    7·1 answer
  • Now let’s apply the work–energy theorem to a more complex, multistep problem. In a pile driver, a steel hammerhead with mass 200
    15·1 answer
  • A physics student shoves a 0.50-kg block from the bottom of a frictionless 30.0° inclined plane. The student performs 4.0 j of w
    8·1 answer
  • When adding vectors, the shortest path from the origin to the end of the last vector
    9·1 answer
  • Please help !!! HELP
    6·1 answer
  • The eficiency of a <br> simple machine can never be 100% why?​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!