1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
o-na [289]
3 years ago
12

A hot air balloon is moving vertically upwards at a velocity of 3m/s. A sandbag is dropped when the balloon reaches 150m. How lo

ng does the sandbag take to reach the ground and what is the maximum height it reaches?
Physics
1 answer:
gregori [183]3 years ago
6 0

This is a perfect opportunity to stuff all that data into the general equation for the height of an object that has some initial height, and some initial velocity, when it is dropped into free fall.

                       H(t)  =  (H₀)  +  (v₀ T)  +  (1/2 a T²)

 Height at any time 'T' after the drop =

                          (initial height) +

                                              (initial velocity) x (T) +
                                                                 (1/2) x (acceleration) x (T²) .

For the balloon problem ...

-- We have both directions involved here, so we have to define them:

     Upward  = the positive direction

                       Initial height = +150 m
                       Initial velocity = + 3 m/s

     Downward = the negative direction

                     Acceleration (of gravity) = -9.8 m/s²

Height when the bag hits the ground = 0 .

                 H(t)  =  (H₀)  +  (v₀ T)  +  (1/2 a T²)

                  
0    =  (150m) + (3m/s T) + (1/2 x -9.8 m/s² x T²)

                   -4.9 T²  +  3T  + 150  =  0

Use the quadratic equation:

                         T  =  (-1/9.8) [  -3 plus or minus √(9 + 2940)  ]

                             =  (-1/9.8) [  -3  plus or minus  54.305  ]

                             =  (-1/9.8) [ 51.305  or  -57.305 ]

                          T  =  -5.235 seconds    or    5.847 seconds .

(The first solution means that the path of the sandbag is part of
the same path that it would have had if it were launched from the
ground 5.235 seconds before it was actually dropped from balloon
while ascending.)

Concerning the maximum height ... I don't know right now any other
easy way to do that part without differentiating the big equation.
So I hope you've been introduced to a little bit of calculus.

                    H(t)  =  (H₀)  +  (v₀ T)  +  (1/2 a T²)

                  
H'(t)  =  v₀ + a T

The extremes of 'H' (height) correspond to points where h'(t) = 0 .

Set                                  v₀ + a T  =  0

                                      +3  -  9.8 T  =  0

Add 9.8 to each  side:   3               =  9.8 T

Divide each side by  9.8 :   T = 0.306 second

That's the time after the drop when the bag reaches its max altitude.

Oh gosh !  I could have found that without differentiating.

- The bag is released while moving UP at 3 m/s .

- Gravity adds 9.8 m/s of downward speed to that every second.
So the bag reaches the top of its arc, runs out of gas, and starts
falling, after
                       (3 / 9.8) = 0.306 second .

At the beginning of that time, it's moving up at 3 m/s.
At the end of that time, it's moving with zero vertical speed).
Average speed during that 0.306 second = (1/2) (3 + 0) =  1.5 m/s .

Distance climbed during that time = (average speed) x (time)

                                                           =  (1.5 m/s) x (0.306 sec)

                                                           =  0.459 meter  (hardly any at all)

     But it was already up there at 150 m when it was released.

It climbs an additional 0.459 meter, topping out at  150.459 m,
then turns and begins to plummet earthward, where it plummets
to its ultimate final 'plop' precisely  5.847 seconds after its release.  

We can only hope and pray that there's nobody standing at
Ground Zero at the instant of the plop.

I would indeed be remiss if were to neglect, in conclusion,
to express my profound gratitude for the bounty of 5 points
that I shall reap from this work.  The moldy crust and tepid
cloudy water have been delicious, and will not soon be forgotten.

You might be interested in
A current of 0.4 A flows through a wire. How many electrons flow through a cross section of
Free_Kalibri [48]

9 × 10²¹ electrons flow through a cross section of the wire in one hour.

<h3>What is the relation between current and charge?</h3>
  • Mathematically, current = charge / time
  • In S.I. unit, Charge is written in Coulomb and time in second.

<h3>What is the amount of charge flown through a wire for one hour if it carries 0.4 A current?</h3>
  • Charge= current × time
  • Current= 0.4 A, time = 1 hour= 3600 s
  • Charge= 0.4× 3600

= 1440 C

<h3>How many numbers of electrons present in 1440C of charge?</h3>
  • One electron= 1.6 × 10^(-19) C
  • So, 1440 C = 1440/1.6 × 10^(-19)

= 9 × 10²¹ electrons

Thus, we can conclude that the 9 × 10²¹ electrons flow through a cross section of the wire in one hour.

Learn more about current here:

brainly.com/question/25922783

#SPJ1

4 0
2 years ago
Inside a television picture tube there is a build-up of electrons (charge of 1.602 × 10^–19 C) with an average spacing of 38.0 n
Brut [27]
The magnitude of electric field is produced by the electrons at a certain distance.

E = kQ/r²

where: 
E = electric field produced
Q = charge
r = distance
k = Coulomb Law constant 9 x10^9<span> N. m</span>2<span> / C</span><span>2

Given are the following:
Q = </span><span>1.602 × 10^–19 C
</span><span>r = 38 x 10^-9 m

Substitue the given:
E = </span>\frac{( 1.602 x 10^{-19} )( 9.0x10_{9} )}{(38x10^{-9}) ^{2} }

E = 998.476 kN/C


8 0
3 years ago
Read 2 more answers
A softball is thrown straight up. To what height will it go if it takes 2.0 sec to reach the highest point?
Genrish500 [490]

Answer:

4.4 m

Explanation:

Given:

v = 0 m/s

a = -9.8 m/s²

t = 2.0 s

Find: Δy

Δy = vt − ½ at²

Δy = 0 − ½ (-9.8) (2.0)²

Δy = 4.4 m

6 0
2 years ago
URGENT PLEASE ANSWER THIS ASAP I WILL MARK YOU THE BRAINLIEST !!!
FrozenT [24]

please mark me brainliesf if it is right

sound waves

4 0
2 years ago
Read 2 more answers
The celestial body of the solar system were said to form what?
bonufazy [111]
Nebular cloud of dust and gas
3 0
2 years ago
Read 2 more answers
Other questions:
  • Technician A states that accidents avoidance is an additional feature on some electronic stability control systems. Technician B
    7·1 answer
  • What is the IMA of the lever pictured? <br> 3.0 <br> 3.3<br> 6.0 <br> 6.6
    15·1 answer
  • Is it true that newtons laws of universal gravitation states that every object in the universe attracts every other object
    15·1 answer
  • The phases of the moon depend on how much of the lighted side of the moon can be seen from earth.is this true or false
    14·1 answer
  • a=vf-vi/t is the equation for calculating the acceleration of an object. write out the relationship shown in the equation using
    13·2 answers
  • Which statement about the effects of medium on the speed of a mechanical wave is true?
    8·1 answer
  • A 160-m long ski lift carries skiers from a station at the foot of a slope to a second station 40 m above. What is the IMA of th
    9·2 answers
  • A whale swims due east for a distance of 6.9 km, turns around and goes due west for 1.8 km, and finally turns around again and h
    11·1 answer
  • When working with electric charges, what symbol is used in equations to represent the electric field of an object?
    15·2 answers
  • What is the amplitude of an AC voltage waveform, in units of Volts, if the RMS value is 369 V?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!