We use the Rydberg Equation for this which is expressed as:
<span>1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
</span>
where lambda is the wavelength, where n represents the final and initial states. Brackett series means that the initial orbit that electron was there is 4 and R is equal to 1.0979x10^7m<span>. Thus,
</span>
1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
1/1.0979x10^7m = 1.0979x10^7m [ 1/(n2)^2 - 1/(4)^2]
Solving for n2, we obtain n=1.
Answer:
Kinetic energy of bigger rock will be more than that of smaller one.
Explanation:
Kinetic energy of the rock is given by,
Kinetic energy = 
As velocity of both the rocks are same. Thus, kinetic energy is directly proportional to the mass of the rock
Kinetic energy ∝ mass
So, For greater mass kinetic energy will be greater and for smaller mass kinetic energy will be smaller.
Hence, Kinetic energy of bigger rock will be more than that of smaller one.
Answer:
The Ring of Fire
Explanation:
The ring of fire is also called the Circum-Pacific Belt, it is a path along the pacific ocean consisting of active volcanoes and frequent earthquakes.
It has a length of approximately 40,000 kilometers. It lies on the edge of tectonic plates where the in-earth vibrations and geothermal energies are prone to erupt out.
Ring of fire inhibits about 75% o the earth's volcanoes and 95% of earthquakes occur in this region.
Answer:
Convection and Radiation mechanisms carry most of the heat
Explanation:
This is because Convection proceeds strongy as heated air rises from the hot element while Radiation is also strong, although the material of the cooking pots will how effective it is.
There are not enough electrons in atoms to affect the total mass, so the total mass is just the weight of the protons and neutrons.