Answer:
h = 50.49 m
Explanation:
Data provided:
Speed of skier, u = 2.0 m/s
Maximum safe speed of the skier, v = 30.0 m/s
Mass of the skier, m = 85.0
Total work = 4000 J
Height from the starting gate = h
Now, from the law of conservation of energy
Total energy at the gate = total energy at the time maximum speed is reached

where, g is the acceleration due to the gravity
on substituting the values, we get

or
170 + 833.85 × h = 4000 + 38250
or
h = 50.49 m
Answer:
1. The sound waves are longitudinal because particles of the medium through which the sound is transported vibrate parallel to the direction that the sound wave moves.
2. A pulse or a wave is introduced into a slinky when a person holds the first coil and gives it a back-and-forth motion. This creates a disturbance within the medium; this disturbance subsequently travels from coil to coil, transporting energy as it moves.
Explanation:
Answer:
Visible light
Explanation:
Electromagnetic spectrum is the classification of the electromagnetic waves according to their frequency/wavelength. In order from the shortest to the longest wavelength, we have
Gamma rays
X-rays
Ultraviolet
Visible light
Infrared
Microwaves
Radio waves
All these waves are invisible to human eye, except for the part referred as 'visible light'. The electromagnetic waves of this part of the spectrum are visible to human eye, and they appear as a different color depending on their wavelength. In particular, we have:
Violet: 380-450 nm
Blue: 450-495 nm
Green: 495-570 nm
Yellow: 570-590 nm
Orange: 590-620 nm
Red: 620-750 nm
Answer:
(a) and (b)
Explanation:
Energy is the capacity to do work, and exists in various forms. These forms can be converted one to another by the use of appropriate means. Some examples are sound, mechanical, solar, light, which causes the sensation of vision, etc. energy is measured in Joules (J).
The rate of transfer of energy is called power.
i.e Power = 
It is measured in Watts (W).
When a white light is disperses into its colors, gray and black are not part of the colors. And a black sometimes could be as a result of the absorption of all other colors of light.
We determine the electric potential energy of the proton by multiplying the net electric potential to the charge of the proton. The net electric potential is the difference of the final state to the that of the initial state. So, it would be 275 - 125 = 150 V.
electric potential energy = 150 (<span>1.602 × 10-19) = 2.4x10^-17 J</span>