<span>So we want to know what statement is an accurate description of vibrations. So humans can hear sound frequencies from 20-20000 Hz. Below 20 Hz is infra sound and above 20000 Hz is ultra sound. Humans cant hear both infra sound and ultra sound so the correct answer is A.</span>
<h2>
Spring constant is 14.72 N/m</h2>
Explanation:
We have for a spring
Force = Spring constant x Elongation
F = kx
Here force is weight of mass
F = W = mg = 0.54 x 9.81 = 5.3 N
Elongation, x = 36 cm = 0.36 m
Substituting
F = kx
5.3 = k x 0.36
k = 14.72 N/m
Spring constant is 14.72 N/m
Answer:
a) m_v = m_s ((
)² - 1) , b) m_v = 1.07 10⁻¹⁴ g
Explanation:
a) The angular velocity of a simple harmonic motion is
w² = k / m
where k is the spring constant and m is the mass of the oscillator
let's apply this expression to our case,
silicon only
w₉² =
k = w₀² m_s
silicon with virus
w² =
k = w² (m_v + m_s)
in the two expressions the constant k is the same and q as the one property of the silicon bar, let us equal
w₀² m_s = w² (m_v + m_s)
m_v = (
)² m_s - m_s
m_v = m_s ((
)² - 1)
b) let's calculate
m_v = 2.13 10⁻¹⁶ [(
)² - 1)]
m_v = 1.07 10⁻¹⁴ g
The formula is
F_grav = G * m1 * m2 / r^2
G m1 and m2 are going to stay the same once chosen no matter what the distance is. The only thing that will change is the distance.
As the distance increases, the Gravitational Force will decrease. It will decrease by quite a bit.
As the distance decreases, the gravitational force will Increase.
The relationship is inverse. The moon travelling around the earth is one example. The earth travelling around the sun is another.