1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sukhopar [10]
3 years ago
8

A battery with an emf of 12.0 V shows a terminal voltage of 11.7 V when operating in a circuit with two lightbulbs, each rated a

t 4.0 W (at 12.0 V), which are connected in parallel.
What is the battery's internal resistance?
Physics
2 answers:
wariber [46]3 years ago
5 0
<h2>Answer:</h2>

0.46Ω

<h2>Explanation:</h2>

The electromotive force (E) in the circuit is related to the terminal voltage(V), of the circuit and the internal resistance (r) of the battery as follows;

E = V + Ir                      --------------------(a)

Where;

I = current flowing through the circuit

But;

V = I x Rₓ                    ---------------------(b)

Where;

Rₓ = effective or total resistance in the circuit.

<em>First, let's calculate the effective resistance in the circuit:</em>

The effective resistance (Rₓ) in the circuit is the one due to the resistances in the two lightbulbs.

Let;

R₁ = resistance in the first bulb

R₂ = resistance in the second bulb

Since the two bulbs are both rated at 4.0W ( at 12.0V), their resistance values (R₁ and R₂) are the same and will be given by the power formula;

P = \frac{V^{2} }{R}

=> R = \frac{V^{2} }{P}             -------------------(ii)

Where;

P = Power of the bulb

V = voltage across the bulb

R = resistance of the bulb

To get R₁, equation (ii) can be written as;

R₁ = \frac{V^{2} }{P}    --------------------------------(iii)

Where;

V = 12.0V

P = 4.0W

Substitute these values into equation (iii) as follows;

R₁ = \frac{12.0^{2} }{4}

R₁ = \frac{144}{4}

R₁ = 36Ω

Following the same approach, to get R₂, equation (ii) can be written as;

R₂ = \frac{V^{2} }{P}    --------------------------------(iv)

Where;

V = 12.0V

P = 4.0W

Substitute these values into equation (iv) as follows;

R₂ = \frac{12.0^{2} }{4}

R₂ = \frac{144}{4}

R₂ = 36Ω

Now, since the bulbs are connected in parallel, the effective resistance (Rₓ) is given by;

\frac{1}{R_{X} } = \frac{1}{R_1} + \frac{1}{R_2}       -----------------(v)

Substitute the values of R₁ and R₂ into equation (v) as follows;

\frac{1}{R_X} = \frac{1}{36} + \frac{1}{36}

\frac{1}{R_X} = \frac{2}{36}

Rₓ = \frac{36}{2}

Rₓ = 18Ω

The effective resistance (Rₓ) is therefore, 18Ω

<em>Now calculate the current I, flowing in the circuit:</em>

Substitute the values of V = 11.7V and Rₓ = 18Ω into equation (b) as follows;

11.7 = I x 18

I = \frac{11.7}{18}

I = 0.65A

<em>Now calculate the battery's internal resistance:</em>

Substitute the values of E = 12.0, V = 11.7V and I = 0.65A  into equation (a) as follows;

12.0 = 11.7 + 0.65r

0.65r = 12.0 - 11.7

0.65r = 0.3

r = \frac{0.3}{0.65}

r = 0.46Ω

Therefore, the internal resistance of the battery is 0.46Ω

Studentka2010 [4]3 years ago
4 0

Answer:

R_i_n_t=0.45 \Omega

Explanation:

Internal resistance is a concept that helps model the electrical consequences of the complex chemical reactions that occur within a battery. When a charge is applied to a battery, the internal resistance can be calculated using the following equation:

R_i_n_t=(\frac{V_N_L}{V_F_L} -1)R_L

Where:

V_F_L=Load\hspace{3}voltage=11.7V\\V_N_L= O pen\hspace{3}circuit\hspace{3}voltage=12V\\R_L=Load\hspace{3}resistance

As you can see, we don't know the exactly value of the R_L. However we can calculated that value using the next simple operations:

The problem tell us that the power of each lightbulb is 4.0 W at 12.0 V, hence let's calculated the power at 11.7V using Cross-multiplication:

\frac{12}{11.7} =\frac{4}{P}

Solving for P :

P=\frac{11.7*4}{12} =3.9W

Now, the electric power is given by:

P=\frac{V^2}{R_b}

Where:

R_b=Resistance\hspace{3}of\hspace{3}each\hspace{3}lightbulb

So:

R_b=\frac{V^2}{P} =\frac{11.7^2}{3.9} =35.1\Omega

Now, because of the lightbulbs are connected in parallel the equivalent resistance is given by:

\frac{1}{R_L} =\frac{1}{R_b} +\frac{1}{R_b} =\frac{2}{R_b} \\\\ R_L= \frac{R_b}{2} =\frac{35.1}{2}=17.55\Omega

Finally, now we have all the data, let's replace it into the internal resistance equation:

R_i_n_t=(\frac{12}{11.7} -1)17.55=0.45\Omega

You might be interested in
13 points and brainlyest if possible. Thanks.
nikdorinn [45]
Most likely it would be C not completely sure 
3 0
3 years ago
Read 2 more answers
If a spaceship has a momentum of 30,000 kg-m/s to the right and a mass of
m_a_m_a [10]

Answer:

75m/s

Explanation:

...................

8 0
3 years ago
Question 5 (Multiple Choice Worth 3 points) (02.07 MC) Rachel needs to eat fewer carbohydrates to improve her health. Which of t
patriot [66]
Milk, apples, and beans don't have much carbohydrate.  So if you
cut down on those, you don't really cut down much on carbohydrates.

If Rachel needs to reduce her intake of carbohydrates, she should
cut down on bread.  (Also cake, sugar, corn, pasta, and potatoes.)
5 0
3 years ago
a current of 180 mini amphere passes through a conductor for 5minute calculate the quantity of electricity transported​
oksano4ka [1.4K]

Answer:

Explanation:

You can calculate the total electric charge that passes through the conductor as q=It=(180\times 10^{-3})(5\times 60)= 54 C. It means that the number of electron that passes through the conductor is:

n=\frac{q}{e}=\frac{54}{1.6\times 10^{-19}}=33.75\times 10^{19}

8 0
2 years ago
What happens to a path of a light ray parallel to the principal axis, after it passes through a converging
Simora [160]

Answer: The ray that passes through the focal point on the way to the lens will refract and travel parallel to the principal axis. ... All three rays should intersect at exactly the same point.

Explanation: Once these incident rays strike the lens, refract them according to the three rules of refraction for converging lenses.

3 0
3 years ago
Other questions:
  • What is the period of a pendulum that takes 5 seconds to make a complete back and forth vibration
    7·1 answer
  • A diver with a mass of 80.0 kg jumps from a dock into a 130.0 kg boat at rest on the west side of the dock. if the velocity of t
    8·1 answer
  • Describe asexual reproduction
    13·1 answer
  • Can someone help me with 45a-g and 46?
    12·1 answer
  • The infant's tendency to turn its head toward things that touch its cheek is known as the
    9·2 answers
  • There are many factors that influence the strength of an electromagnet. What could be done to make the electromagnet stronger?
    11·2 answers
  • What happened as the mass of the sun increased during formation of the solor system
    13·1 answer
  • Which material would result in the greatest amount of energy transfer? An absorber that is dark in color and rough. A reflector
    6·2 answers
  • A 20 kg rover is located on Mars where the acceleration due to gravity is 3.7 m/s/s.
    10·1 answer
  • Science is based on the correspondence theory of truth, which claims that truth corresponds with facts and reality.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!