1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sukhopar [10]
3 years ago
8

A battery with an emf of 12.0 V shows a terminal voltage of 11.7 V when operating in a circuit with two lightbulbs, each rated a

t 4.0 W (at 12.0 V), which are connected in parallel.
What is the battery's internal resistance?
Physics
2 answers:
wariber [46]3 years ago
5 0
<h2>Answer:</h2>

0.46Ω

<h2>Explanation:</h2>

The electromotive force (E) in the circuit is related to the terminal voltage(V), of the circuit and the internal resistance (r) of the battery as follows;

E = V + Ir                      --------------------(a)

Where;

I = current flowing through the circuit

But;

V = I x Rₓ                    ---------------------(b)

Where;

Rₓ = effective or total resistance in the circuit.

<em>First, let's calculate the effective resistance in the circuit:</em>

The effective resistance (Rₓ) in the circuit is the one due to the resistances in the two lightbulbs.

Let;

R₁ = resistance in the first bulb

R₂ = resistance in the second bulb

Since the two bulbs are both rated at 4.0W ( at 12.0V), their resistance values (R₁ and R₂) are the same and will be given by the power formula;

P = \frac{V^{2} }{R}

=> R = \frac{V^{2} }{P}             -------------------(ii)

Where;

P = Power of the bulb

V = voltage across the bulb

R = resistance of the bulb

To get R₁, equation (ii) can be written as;

R₁ = \frac{V^{2} }{P}    --------------------------------(iii)

Where;

V = 12.0V

P = 4.0W

Substitute these values into equation (iii) as follows;

R₁ = \frac{12.0^{2} }{4}

R₁ = \frac{144}{4}

R₁ = 36Ω

Following the same approach, to get R₂, equation (ii) can be written as;

R₂ = \frac{V^{2} }{P}    --------------------------------(iv)

Where;

V = 12.0V

P = 4.0W

Substitute these values into equation (iv) as follows;

R₂ = \frac{12.0^{2} }{4}

R₂ = \frac{144}{4}

R₂ = 36Ω

Now, since the bulbs are connected in parallel, the effective resistance (Rₓ) is given by;

\frac{1}{R_{X} } = \frac{1}{R_1} + \frac{1}{R_2}       -----------------(v)

Substitute the values of R₁ and R₂ into equation (v) as follows;

\frac{1}{R_X} = \frac{1}{36} + \frac{1}{36}

\frac{1}{R_X} = \frac{2}{36}

Rₓ = \frac{36}{2}

Rₓ = 18Ω

The effective resistance (Rₓ) is therefore, 18Ω

<em>Now calculate the current I, flowing in the circuit:</em>

Substitute the values of V = 11.7V and Rₓ = 18Ω into equation (b) as follows;

11.7 = I x 18

I = \frac{11.7}{18}

I = 0.65A

<em>Now calculate the battery's internal resistance:</em>

Substitute the values of E = 12.0, V = 11.7V and I = 0.65A  into equation (a) as follows;

12.0 = 11.7 + 0.65r

0.65r = 12.0 - 11.7

0.65r = 0.3

r = \frac{0.3}{0.65}

r = 0.46Ω

Therefore, the internal resistance of the battery is 0.46Ω

Studentka2010 [4]3 years ago
4 0

Answer:

R_i_n_t=0.45 \Omega

Explanation:

Internal resistance is a concept that helps model the electrical consequences of the complex chemical reactions that occur within a battery. When a charge is applied to a battery, the internal resistance can be calculated using the following equation:

R_i_n_t=(\frac{V_N_L}{V_F_L} -1)R_L

Where:

V_F_L=Load\hspace{3}voltage=11.7V\\V_N_L= O pen\hspace{3}circuit\hspace{3}voltage=12V\\R_L=Load\hspace{3}resistance

As you can see, we don't know the exactly value of the R_L. However we can calculated that value using the next simple operations:

The problem tell us that the power of each lightbulb is 4.0 W at 12.0 V, hence let's calculated the power at 11.7V using Cross-multiplication:

\frac{12}{11.7} =\frac{4}{P}

Solving for P :

P=\frac{11.7*4}{12} =3.9W

Now, the electric power is given by:

P=\frac{V^2}{R_b}

Where:

R_b=Resistance\hspace{3}of\hspace{3}each\hspace{3}lightbulb

So:

R_b=\frac{V^2}{P} =\frac{11.7^2}{3.9} =35.1\Omega

Now, because of the lightbulbs are connected in parallel the equivalent resistance is given by:

\frac{1}{R_L} =\frac{1}{R_b} +\frac{1}{R_b} =\frac{2}{R_b} \\\\ R_L= \frac{R_b}{2} =\frac{35.1}{2}=17.55\Omega

Finally, now we have all the data, let's replace it into the internal resistance equation:

R_i_n_t=(\frac{12}{11.7} -1)17.55=0.45\Omega

You might be interested in
Cart 1 of mass m is traveling with speed 2vo in the +x-direction when it has an elastic collision with cart 2 of
iogann1982 [59]

Answer:

Explanation:

Momentum conservation

m2v_0+2mv_0=mv_1+2mv_2 \quad (1/m) \quad 4v_0=v_1+2v_2\\

Kinetic energy conservation

\displaystyle \frac{1}{2}m(2v_0)^2+\frac{1}{2}2mv_0^2=\frac{1}{2}mv_1^2+\frac{1}{2}2mv_2^2 \quad (1/m) \quad 6v_0^2=v_1^2+2v_2^2

Solve the system

6 0
3 years ago
it is determined that a certain light wave has a wavelength of 3.012x10^-12 m. the light travels at 2.99x10^8 m/s. what is the f
Dahasolnce [82]

Answer:

9.93\times 10^{19}Hz

Explanation:

Speed of light is the product of its wavelength and frequency, expressed as

S=fw

Where s represent speed, f is frequency while w is wavelength

Making f the subject of the formula then

f=s/w

Substituting 2.99x10^8 m/s for s and 3.012x10^-12 m for w then

f=\frac {2.99\times 10^{8}}{3.012\times 10^{-12}}=9.926958831341\times 10^{19}\\f\approx 9.93\times 10^{19}Hz

Therefore, the frequency equals to 9.93\times 10^{19}Hz

4 0
3 years ago
Blood in a carotid artery carrying blood to the head is moving at 0.15 m/s when it reaches a section where plaque has narrowed t
sp2606 [1]

Answer:

26.9 Pa

Explanation:

We can answer this question by using the continuity equation, which states that the volume flow rate of a fluid in a pipe must be constant; mathematically:

A_1 v_1 = A_2 v_2 (1)

where

A_1 is the cross-sectional area of the 1st section of the pipe

A_2 is the cross-sectional area of the 2nd section of the pipe

v_1 is the velocity of the 1st section of the pipe

v_2 is the velocity of the 2nd section of the pipe

In this problem we have:

v_1=0.15 m/s is the velocity of blood in the 1st section

The diameter of the 2nd section is 74% of that of the 1st section, so

d_2=0.74d_1

The cross-sectional area is proportional to the square of the diameter, so:

A_2=(0.74)^2 A_1=0.548 A_1

And solving eq.(1) for v2, we find the final velocity:

v_2=\frac{A_1 v_1}{A_2}=\frac{A_1 (0.15)}{0.548 A_1}=0.274 m/s

Now we can use Bernoulli's equation to find the pressure drop:

p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2

where

\rho=1025 kg/m^3 is the blood density

p_1,p_2 are the initial and final pressure

So the pressure drop is:

p_1 - p_2 = \frac{1}{2}\rho (v_2^2-v_1^2)=\frac{1}{2}(1025)(0.274^2-0.15^2)=26.9 Pa

8 0
3 years ago
How much distance does it take to stop a car going 30 m/s (67 mph) if the brakes can apply a force equal to one half the car’s w
denpristay [2]

Answer:

0

rqc3fgt9uwgtd.ojbxrfdgi8ubvg iohy

5 0
2 years ago
A motorcycle is traveling east at a rate of 56mph.it take 6.7 s for it to decrease its speed to 35mph. How far does the motorcyc
Phantasy [73]
Initial speed = 56mph
Final speed = 35mph

Time taken = 6.7seconds...

Converting the time to hour.. Divide by 3600..
= 6.7/3600

=0.00186hour..

Acceleration = v-u/t

a = 35-56/0.00186
a = -11283.6mph²

The negative sign shows that it decelerated...

V² = u²+2as

(35)² = (56)² + 2×-11283.6×s
Where s is the distance covered within that time...

1225 = 3136 - 22567.2s

22567.2s = 3136-1225

22567.2s = 1911

S = 1911/22567.2

S = 0.08468miles...

But at the end of the question we were made to understand that 1miles = 5280ft

Therefore 0.08468miles = (0.08468×5280)ft

= 447. 11feets...

Which is approximately 447ft.....


Hope this helped.... ?
8 0
3 years ago
Other questions:
  • What is the speed of a wave with a wavelength of 0.60 m and frequency of 240 Hz
    13·1 answer
  • I am detained how will i be able to get out?
    13·1 answer
  • What is amplitude?
    10·1 answer
  • Select the correct answer. x y 2.5 6.25 9.4 88.36 15.6 243.63 19.5 380.25 25.8 665.64 The table lists the values for two paramet
    12·1 answer
  • How fast is a cat that runs 3 kilometers in 0.5 hours
    14·1 answer
  • A skateboarder wants to cross a large playground and notices that there are large shapes painted on its asphalt surface. One sha
    7·1 answer
  • Frequency is the ____________ that move past a point during a specific amount of time. Frequency is measured in ____________ , a
    15·1 answer
  • A ball with an initial velocity of 2 m/s rolls for a period of 3 seconds. If the ball is uniformly accelerating at a rate of 3 m
    7·1 answer
  • Pitch is determined by the ____ of a sound wave.
    10·2 answers
  • If a critical mass of fissionable material in a spherical shape is flattened like a hamburger, it will be?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!