<span>A van is traveling on a road at a speed of 55 km/h relative to a
stationary observer on the side of the road. A girl sitting near the
driver of the van throws a paper airplane to a boy at the back of the
van with a speed of 2 km/h relative to the girl, the boy, and the van.
The speed of the paper airplane, relative to the same stationary observer
on the side of the road, is (55 - 2) = 53 km/h. No rounding is necessary.</span>
D.to bring light together
Answer:
Characteristic numbers are dimensionless numbers used in fluid dynamics to describe a character of the flow. To compare a real situation with a small-scale model it is necessary to keep the important characteristic numbers the same. Names of these numbers were standardized in ISO 31, part 12.
Explanation:
Answer:
It will take you 30.8 s to travel the 120 m of the ramp.
Explanation:
Hi there!
The equation for the position of an object moving in a straight line is:
x = x0 + v * t
Where:
x = position at time t
x0 = initial position
v = velocity
t = time
In this case, we will consider the start of the ramp as the origin of our reference system so that x0 = 0.
Now, let´s calculate the speed of the person walking on the ground:
x = v * t
120 m = v * 72 s
v = 120 m / 72 s
v = 1.7 m/s
If you walk on the ramp with that speed, your total speed will be your walking speed plus the speed of the ramp because both are in the same direction. Then, using the equation for the position:
x = v * t
In this case, v = speed of the ramp + walking speed
v = 2.2 m/s + 1.7 m/s = 3.9 m/s
120 m = 3.9 m/s * t
t = 120 m / 3.9 m/s = 30.8 s
It will take you 30.8 s to travel the 120 m
All you need to do is find what location you need and look it up and see if you get the right answer bruh