Answer:
Explanation:
Input refers to the amount of energy put into a device, and output refers to the amount of energy that comes out. A device may change the type of energy but not the amount. For example, a light bulb's input energy is the form of electrical energy, and its output energy is in the form of light and heat. Efficiency.
Use the right equation. To calculate the normal force of an object at an angle, you need to use the formula: N = m * g * cos (x) For this equation, N refers to the normal force, m refers to the object's mass, g refers to the acceleration of gravity, and x refers to the angle of incline.
Answer:
4500.5 nutritional calories per gram
Explanation:
Heat lost by the new candy = heat gained by the bomb calorimeter.
Heat gained by the bomb calorimeter = c×ΔT
where c = heat capacity of the calorimeter = 32.20 KJ/K = 32200 J/K
ΔT = change in temperature = 2.69°C = 2.69 K.
Heat gained by the bomb calorimeter = 32200 × 2.69 = 86618 J
Heat lost by the new candy = heat gained by the bomb calorimeter = 86618 J = 20702.2 calories
4.60 g of the new candy lost this amount of calories by undergoing combustion,
The amount of calories per g = 20702.2 calories/4.6 g = 4500.5 calories per gram
Answer:
0.786 Hz, 1.572 Hz, 2.358 Hz, 3.144 Hz
Explanation:
The fundamental frequency of a standing wave on a string is given by

where
L is the length of the string
T is the tension in the string
is the mass per unit length
For the string in the problem,
L = 30.0 m

T = 20.0 N
Substituting into the equation, we find the fundamental frequency:

The next frequencies (harmonics) are given by

with n being an integer number and f being the fundamental frequency.
So we get:


