Answer: The ball hits the ground at 5 s
Step-by-step explanation:
The question seems incomplete and there is not enough data. However, we can work with the following function to understand this problem:
(1)
Where
models the height of the ball in meters and
the time.
Now, let's find the time
when the ball Sara kicked hits the ground (this is when
):
(2)
Rearranging the equation:
(3)
Dividing both sides of the equation by
:
(4)
This quadratic equation can be written in the form
, and can be solved with the following formula:
(5)
Where:
Substituting the known values:
(6)
Solving we have the following result:
This means the ball hit the ground 5 seconds after it was kicked by Sara.
Answer:
should i simplify it? or factorise it?
<u>I</u><u> </u><u>g</u><u>u</u><u>e</u><u>s</u><u>s</u><u> </u><u>i</u><u>t</u><u>s</u><u> </u><u>f</u><u>a</u><u>c</u><u>t</u><u>o</u><u>r</u><u>i</u><u>s</u><u>e</u><u>!</u><u> </u><u>S</u><u>o</u><u> </u><u>i</u><u> </u><u>m</u><u> </u><u>f</u><u>a</u><u>c</u><u>t</u><u>o</u><u>r</u><u>i</u><u>s</u><u>i</u><u>n</u><u>g</u><u>!</u>
x^2+16+64
(x)^2+2×x×8+(8)^2
(x+8)^2
=(x+8)(x+8)
Just multiply the given x values by the function rule, that’s how you get ur y