Speed = 500m/5min = 100 m/min. Direction = west. Velocity = 100 m/min west.
Answer:
I'm not sure sorry.... shshsjsk
The De Broglie's wavelength of a particle is given by:

where
is the Planck constant
p is the momentum of the particle
In this problem, the momentum of the electron is equal to the product between its mass and its speed:

and if we substitute this into the previous equation, we find the De Broglie wavelength of the electron:

So, the answer is True.
Answer: 1.51 km
Explanation:
<u>Coulomb's Law:</u> The electrostatic force between two charge particles Q: and Q2 is directly proportional to product of magnitude of charges and inversely proportional to square of separation distance between them.
Or, 
Where Q1 and Q2 are magnitude of two charges and r is distance between them:
<u>Given:</u>
Q1 = Charge near top of cloud = 48.8 C
Q2 = Charge near the bottom of cloud = -41.7 C
Force between charge at top and bottom of cloud (i.e. between Q: and Q2) (F) = 7.98 x 10^6N
k = 8.99 x 109Nm^2/C^2
<u>So,</u>

Therefore, the separation between the two charges (r) = 1.51 km
Work done against gravity to climb upwards is always stored in the form of gravitational potential energy
so we can say

here h = vertical height raised
so here we know that

here we have

now from above equation


so work done will be given by above value