Hot water, as in very hot water, goes to steam with an enormous change in volume and pressure. This is capable of driving turbine blades, which in turn rotate enormous copper (eg) wired coils in enormous magnetic fields. This in turn produces electricity via electromagnetic induction and Fleming's right hand (I think it is) DYNAMO rule. That goes down miles and mile of v heavy conducting wire/cable as electricity.
-B because metal hardly breaks but non metal items such as glass or plastic does!
Answer:
34 m/s
Explanation:
Potential energy at top = kinetic energy at bottom + work done by friction
PE = KE + W
mgh = ½ mv² + Fd
mg (d sin θ) = ½ mv² + Fd
Solving for v:
½ mv² = mg (d sin θ) − Fd
mv² = 2mg (d sin θ) − 2Fd
v² = 2g (d sin θ) − 2Fd/m
v = √(2g (d sin θ) − 2Fd/m)
Given g = 9.8 m/s², d = 150 m, θ = 28°, F = 50 N, and m = 65 kg:
v = √(2 (9.8 m/s²) (150 m sin 28°) − 2 (50 N) (150 m) / (65 kg))
v = 33.9 m/s
Rounded to two significant figures, her velocity at the bottom of the hill is 34 m/s.
Answer:
There must be an equal amount of each element on both sides of the equation. Hope this helps and please marks as the brainliest.
Explanation:
By equation of motion we have v = u + at
Where u = Initial velocity, v = final velocity, t = time taken and a = acceleration
Here v = 141 m/s, u = 17.7 m/s and t = 6 s
On substitution we will get
141 = 17.7+ 6a
So, a = (141-17.7)/6 = 20. 55 m/
Aceeleration = 20. 55 m/
along north direction.