Answer:
θ = 6.3 *10³ revolutions
Explanation:
Angular acceleration of the drill
We apply the equations of circular motion uniformly accelerated
ωf= ω₀ + α*t Formula (1)
Where:
α : Angular acceleration (rad/s²)
ω₀ : Initial angular speed ( rad/s)
ωf : Final angular speed ( rad
t : time interval (s)
Data
ω₀ = 0
ωf = 350000 rpm = 350000 rev/min
1 rev = 2π rad
1 min= 60 s
ωf = 350000 rev/min =350000*(2π rad/60 s)
ωf = 36651.9 rad/s
t = 2.2 s
We replace data in the formula (2) :
ωf= ω₀ + α*t
36651.9 = 0 + α* (2.2)
α = 36651.9 / (2.2)
α = 17000 rad/s²
Revolutions made by the drill
We apply the equations of circular motion uniformly accelerated
ωf²= ω₀ ²+ 2α*θ Formula (2)
Where:
θ : Angle that the body has rotated in a given time interval (rad)
We replace data in the formula (2):
(ωf)²= ω₀²+ 2α*θ
(36651.9)²= (0)²+ 2( 17000 )*θ
θ = (36651.9)²/ (34000 )
θ = 39510.64 rad = 39510.64 rad* (1 rev/2πrad)
θ = 6288.31 revolutions
θ = 6.3 *10³ revolutions
The Milky Way is a spiral galaxy type so it has arms sort of like an octopus. We live in the Milky Way
D is correct, Gamma rays have the shortest wavelength.
1. All the relevant resistors are in series, so the total (or equivalent) resistance is the sum of the resistances of the resistors: 20 Ω + 80 Ω + 50 Ω = 150 Ω [choice A].
2. The ammeter will read the current flowing through this circuit. We can find the ammeter reading using Ohm's law in terms of the electromotive force provided by the battery: I = ℰ/R = (30 V)(150 Ω) = 0.20 A [choice C].
3. The voltmeter will measure the potential drop across the 50 Ω resistor, i.e., the voltage at that resistor. We know from question 2 that the current flowing through the resistor is 0.20 A. So, from Ohm's law, V = IR = (0.20 A)(50 Ω) = 10. V, which will be the voltmeter reading [choice F].
4. Trick question? If the circuit becomes open, then no current will flow. Moreover, even if the voltmeter were kept as element of the circuit, voltmeters generally have a very high resistance (an ideal voltmeter has infinite resistance), so the current moving through the circuit will be negligible if not nil. In any case, the ammeter reading would be 0 A [choice B].