Answer:
The direction of angular velocity and angular momentum are perpendicular to the plane of rotation. Using the right hand rule, the direction of both angular velocity and angular momentum is defined as the direction in which the thumb of your right hand points when you curl your fingers in the direction of rotation.
Explanation:
Since the initial and the final velocity are just equal, it is implied that the acceleration is zero. This means that the net force acting on the body is also zero. The horizontal force should be equal to the force of friction. The force of friction is equal to the product of the coefficient and the normal force.
Ff = (coefficient of friction) x Fn
The normal force is equal to the object's weight if the surface is horizontal.
Ff = (0.20) x (30 kg) x (9.8 m/s²) = 58.8 N
<span>
<span>Thus, the horizontal force exerted must be 58.8 N.
--------------------------------------
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span></span>
k = 5.29
a = 0.78m/s²
KE = 0.0765J
<u>Explanation:</u>
Given-
Mass of air tracker, m = 1.15kg
Force, F = 0.9N
distance, x = 0.17m
(a) Effective spring constant, k = ?
Force = kx
0.9 = k X0.17
k = 5.29
(b) Maximum acceleration, m = ?
We know,
Force = ma
0.9N = 1.15 X a
a = 0.78 m/s²
c) kinetic energy, KE of the glider at x = 0.00 m.
The work done as the glider was moved = Average force * distance
This work is converted into kinetic energy when the block is released. The maximum kinetic energy occurs when the glider has moved 0.17m back to position x = 0
As the glider is moved 0.17m, the average force = ½ * (0 + 0.9)
Work = Kinetic energy
KE = 0.450 * 0.17
KE = 0.0765J
Question
4. An object has a mass in air of 0.0832 kg, apparent mass in water of 0.0673 kg, and apparent mass in another liquid of 0.0718 kg. What is the specific gravity of the other liquid
Hold on, our servers are swamped. Wait for your answer to fully load.
Answer:
Explanation:4. An object has a mass in air of 0.0832 kg, apparent mass in water of 0.0673 kg, and apparent mass in another liquid of 0.0718 kg. What is the specific gravity of the other liquid
There is no theoretical OR observational evidence for that statement.