Answer:
(i) ∠ABH = 14.5°
(ii) The length of AH = 4.6 m
Step-by-step explanation:
To solve the problem, we will follow the steps below;
(i)Finding ∠ABH
first lets find <HBC
<BHC + <HBC + <BCH = 180° (Sum of interior angle in a polygon)
46° + <HBC + 90 = 180°
<HBC+ 136° = 180°
subtract 136 from both-side of the equation
<HBC+ 136° - 136° = 180° -136°
<HBC = 44°
lets find <ABC
To do that, we need to first find <BAC
Using the sine rule
= 
A = ?
a=6.9
C=90
c=13.2
= 
sin A = 6.9 sin 90 /13.2
sinA = 0.522727
A = sin⁻¹ ( 0.522727)
A ≈ 31.5 °
<BAC = 31.5°
<BAC + <ABC + <BCA = 180° (sum of interior angle of a triangle)
31.5° +<ABC + 90° = 180°
<ABC + 121.5° = 180°
subtract 121.5° from both-side of the equation
<ABC + 121.5° - 121.5° = 180° - 121.5°
<ABC = 58.5°
<ABH = <ABC - <HBC
=58.5° - 44°
=14.5°
∠ABH = 14.5°
(ii) Finding the length of AH
To find length AH, we need to first find ∠AHB
<AHB + <BHC = 180° ( angle on a straight line)
<AHB + 46° = 180°
subtract 46° from both-side of the equation
<AHB + 46°- 46° = 180° - 46°
<AHB = 134°
Using sine rule,
= 
AH = 13.2 sin 14.5 / sin 134
AH≈4.6 m
length AH = 4.6 m
1+38*225(12/77)
1+38*225*6.41
1*8550*6.41
1+54,805.5
54,806.5
Use pemdas to solve it
The angle x is half the sum of the intercepted arcs, PQ and NO.
... (1/2)(65° + 45°) = 55° = x° = m∠PMQ
Answer:
14 cm
Step-by-step explanation:
One side of the composite has a length of 6 and the other side has a length of 8.
If we add these two numbers, we'll get the missing side length of the rectangle
6 + 8 = 14 cm
X=9
3x-12=x+6
2x-12=6
2x=18
X=9