Answer:
k = [F2]² [PO]² / [P2] [F2O]²
Explanation:
In a chemical equilibrium, the equilibrium constant expression is written as the ratio between the molar concentration of the products over the molar concentration of the reactants. Each species powered to its reaction coefficient. For the equilibrium:
P2(g) + 2F2O(g) ⇄ 2PO(g) + 2F2(g)
The equilibrium constant, k, is:
k = [F2]² [PO]² / [P2] [F2O]²
I think the correct answer from the choices listed above is option A. The structural level of a protein least affected by a disruption in hydrogen bonding is the primary level. The other levels are very much affected by hydrogen bonding. Hope this answers the question.
Answer:
Explanation:
Hello there!
In this case, according to the Charles' law equation which help us to understand the directly proportional relationship between volume and temperature:
Thus, by solving for the final temperature, T2, and making sure we use the temperatures in Kelvin, we can calculate the final temperature as shown below:

Best regards!
Best regards!
A sample of an ideal gas has a volume of 2.30 L at 281 K and 1.02 atm. 1.76 atm is the pressure when the volume is 1.41 L and the temperature is 298 K.
<h3>What is Combined Gas Law ?</h3>
This law combined the three gas laws that is (i) Charle's Law (ii) Gay-Lussac's Law and (iii) Boyle's law.
It is expressed as

where,
P₁ = first pressure
P₂ = second pressure
V₁ = first volume
V₂ = second volume
T₁ = first temperature
T₂ = second temperature
Now put the values in above expression we get



P₂ = 1.76 atm
Thus from the above conclusion we can say that A sample of an ideal gas has a volume of 2.30 L at 281 K and 1.02 atm. 1.76 atm is the pressure when the volume is 1.41 L and the temperature is 298 K.
Learn more about the Combined gas Law here: brainly.com/question/13538773
#SPJ4
1,05+ 0,69 + 1,82 = 3,56g of mixture
%CaCO₃: 1,82/3,56×100% = 0,5112×100% = 51,12%