Explanation:
The given data is as follows.
Solvent 1 = benzene, Solvent 2 = water
= 2.7,
= 100 mL
= 10 mL, weight of compound = 1 g
Extract = 3
Therefore, calculate the fraction remaining as follows.
![f_{n} = [1 + K_{p}(\frac{V_{S_{2}}}{V_{S_{1}}})]^{-n}](https://tex.z-dn.net/?f=f_%7Bn%7D%20%3D%20%5B1%20%2B%20K_%7Bp%7D%28%5Cfrac%7BV_%7BS_%7B2%7D%7D%7D%7BV_%7BS_%7B1%7D%7D%7D%29%5D%5E%7B-n%7D)
= ![[1 + 2.7(\frac{100}{10})]^{-3}](https://tex.z-dn.net/?f=%5B1%20%2B%202.7%28%5Cfrac%7B100%7D%7B10%7D%29%5D%5E%7B-3%7D)
= 
= 
Hence, weight of compound to be extracted = weight of compound - fraction remaining
= 1 - 
= 0.00001
or, = 
Thus, we can conclude that weight of compound that could be extracted is
.
After reading a book about parrots, Tani wants to
learn more about them. The question that could be answered through scientific
investigation is letter B, ‘<span>What
substances make up an eggshell?’ The other choices cannot be answered through
scientific investigation.</span>
Answer:
The answer is 17.03052. We assume you are converting between grams Ammonia and mole.
the molar mass of the element is 81.36 g/mol
<u><em>calculation</em></u>
step 1 : multiply each %abundance of the isotope by its mass number
that is 79.95 x 29.9 =2391
81.95 x 70.1 = 5745
Step 2: add them together
2390.5 + 5744.7 =8136
Step 3: divide by 100
= 8136/100 = 81.36 g/mol