Answer:
This is an example of a food chain
Explanation:
Think of it as a chain reaction. The grass feeds and nourishes the prairie dog. Upon eating the prairie dog, the coyote gets the nutrients from both the grass the prairie dog ate and from the prairie dog itself.
4 and 2 electrons are present.
Explanation:
“The isomers butane and methyl propane have the same molecular formula and different properties”, this is because structural isomers usually have different properties to their parent.
Answer:
The correct option is: (D) -2.4 kJ/mol
Explanation:
<u>Chemical reaction involved</u>: 2PG ↔ PEP
Given: The standard Gibb's free energy change: ΔG° = +1.7 kJ/mol
Temperature: T = 37° C = 37 + 273.15 = 310.15 K (∵ 0°C = 273.15K)
Gas constant: R = 8.314 J/(K·mol) = 8.314 × 10⁻³ kJ/(K·mol) (∵ 1 kJ = 1000 J)
Reactant concentration: 2PG = 0.5 mM
Product concentration: PEP = 0.1 mM
Reaction quotient: ![Q_{r} =\frac{\left [ PEP \right ]}{\left [ 2PG \right ]} = \frac{0.1 mM}{0.5 mM} = 0.2](https://tex.z-dn.net/?f=Q_%7Br%7D%20%3D%5Cfrac%7B%5Cleft%20%5B%20PEP%20%5Cright%20%5D%7D%7B%5Cleft%20%5B%202PG%20%5Cright%20%5D%7D%20%3D%20%5Cfrac%7B0.1%20mM%7D%7B0.5%20mM%7D%20%3D%200.2)
<u>To find out the Gibb's free energy change at 37° C (310.15 K), we use the equation:</u>

![\Delta G = 1.7 kJ/mol + [2.303 \times (8.314 \times 10^{-3} kJ/(K.mol))\times (310.15 K)] log (0.2)](https://tex.z-dn.net/?f=%5CDelta%20G%20%3D%201.7%20kJ%2Fmol%20%2B%20%5B2.303%20%5Ctimes%20%288.314%20%5Ctimes%2010%5E%7B-3%7D%20kJ%2F%28K.mol%29%29%5Ctimes%20%28310.15%20K%29%5D%20log%20%280.2%29)
![\Delta G = 1.7 + [5.938] \times (-0.699) = 1.7 - 4.15 = (-2.45 kJ/mol)](https://tex.z-dn.net/?f=%5CDelta%20G%20%3D%201.7%20%2B%20%5B5.938%5D%20%5Ctimes%20%28-0.699%29%20%3D%201.7%20-%204.15%20%3D%20%28-2.45%20kJ%2Fmol%29)
<u>Therefore, the Gibb's free energy change at 37° C (310.15 K): </u><u>ΔG = (-2.45 kJ/mol)</u>
The hydrogen bonding in H₂O is stronger than that of HF
Explanation:
Hydrogen bonds are special dipole-dipole attraction in which electrostatic attraction is established between hydrogen atom of one molecule and the electronegative atom of a neighboring molecule.
- The strength of hydrogen bonds depends on the how electronegative an atom is.
- Electronegativity refers to the tendency of an atom to gain electrons.
- The higher the value, the higher the tendency.
- This why oxygen with a higher electronegativity will form a stronger hydrogen bond with hydrogen compared to fluorine.
Learn more:
hydrogen bond brainly.com/question/12408823
#learnwithBrainly