It has ns1 electron configuration like the alkali metals.
(NH₄)₂CO₃ → 2NH₄⁺ + CO₃²⁻
k=2 k=1
Answer:
![\% diss = 50\%](https://tex.z-dn.net/?f=%5C%25%20diss%20%3D%2050%5C%25)
Explanation:
Hello there!
In this case, when considering weak acids which have an associated percent dissociation, we first need to set up the ionization reaction and the equilibrium expression:
![HA\rightleftharpoons H^++A^-\\\\Ka=\frac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=HA%5Crightleftharpoons%20H%5E%2B%2BA%5E-%5C%5C%5C%5CKa%3D%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
Now, by introducing x as the reaction extent which also represents the concentration of both H+ and A-, we have:
![Ka=\frac{x^2}{[HA]_0-x} =10^{-4.74}=1.82x10^{-5}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7Bx%5E2%7D%7B%5BHA%5D_0-x%7D%20%3D10%5E%7B-4.74%7D%3D1.82x10%5E%7B-5%7D)
Thus, it is possible to find x given the pH as shown below:
![x=10^{-pH}=10^{-4.74}=1.82x10^{-5}M](https://tex.z-dn.net/?f=x%3D10%5E%7B-pH%7D%3D10%5E%7B-4.74%7D%3D1.82x10%5E%7B-5%7DM)
So that we can calculate the initial concentration of the acid:
![\frac{(1.82x10^{-5})^2}{[HA]_0-1.82x10^{-5}} =1.82x10^{-5}\\\\\frac{1.82x10^{-5}}{[HA]_0-1.82x10^{-5}} =1\\\\](https://tex.z-dn.net/?f=%5Cfrac%7B%281.82x10%5E%7B-5%7D%29%5E2%7D%7B%5BHA%5D_0-1.82x10%5E%7B-5%7D%7D%20%3D1.82x10%5E%7B-5%7D%5C%5C%5C%5C%5Cfrac%7B1.82x10%5E%7B-5%7D%7D%7B%5BHA%5D_0-1.82x10%5E%7B-5%7D%7D%20%3D1%5C%5C%5C%5C)
![[HA]_0=3.64x10^{-5}M](https://tex.z-dn.net/?f=%5BHA%5D_0%3D3.64x10%5E%7B-5%7DM)
Therefore, the percent dissociation turns out to be:
![\% diss=\frac{x}{[HA]_0}*100\% \\\\\% diss=\frac{1.82x10^{-5}M}{3.64x10^{-5}M}*100\% \\\\\% diss = 50\%](https://tex.z-dn.net/?f=%5C%25%20diss%3D%5Cfrac%7Bx%7D%7B%5BHA%5D_0%7D%2A100%5C%25%20%5C%5C%5C%5C%5C%25%20diss%3D%5Cfrac%7B1.82x10%5E%7B-5%7DM%7D%7B3.64x10%5E%7B-5%7DM%7D%2A100%5C%25%20%5C%5C%5C%5C%5C%25%20diss%20%3D%2050%5C%25)
Best regards!
Answer : The correct option is, (D) 3600 kJ
Explanation :
Mass of octane = 75 g
Molar mass of octane = 114.23 g/mole
Enthalpy of combustion = -5500 kJ/mol
First we have to calculate the moles of octane.
![\text{ Moles of octane}=\frac{\text{ Mass of octane}}{\text{ Molar mass of octane}}=\frac{75g}{114.23g/mole}=0.656moles](https://tex.z-dn.net/?f=%5Ctext%7B%20Moles%20of%20octane%7D%3D%5Cfrac%7B%5Ctext%7B%20Mass%20of%20octane%7D%7D%7B%5Ctext%7B%20Molar%20mass%20of%20octane%7D%7D%3D%5Cfrac%7B75g%7D%7B114.23g%2Fmole%7D%3D0.656moles)
Now we have to calculate the heat released in the reaction.
As, 1 mole of octane released heat = -5500 kJ
So, 0.656 mole of octane released heat = 0.656 × (-5500 kJ)
= -3608 kJ
≈ -3600 kJ
Therefore, the heat released in the reaction is 3600 kJ
Strontium (Sr). Elements in the same group of the periodic table have similar characteristics.