Multiply the volume and density together. Multiply your two numbers together, and you'll know the mass of your object. Keep track of the units as you do this, and you'll see that you end up with units of mass (kilograms or grams). Example: We have a diamond with volume 5,000 cm3 and density 3.52 g/cm3
Carbohydrates are classified in three major categories depending upon the number of sub units joining to form them. These are,
Monosaccharides
Oligosaccharides
Polysachharides
The simplest single units are monosaccharides, if units are ranging between two and twenty they are called oligosaccharides and above twenty joining units they are called polysachharides.
Result:
<span>The proper name for a carbohydrate polymer with 2 subunits is called Oligosachharide in general and Disaccharide in specific.</span>
Answer: they contain solutes and solvents, their particles must be evenly distributed, they may contain solid liquid and gas simultaneously, and they are homogeneous matter.
Explanation:
1. 12 L = 12 dm³
2. 3.18 g
<h3>Further explanation</h3>
Given
1. Reaction
K₂CO₃+2HNO₃⇒ 2KNO₃+H₂O+CO₂
69 g K₂CO₃
2. 0.03 mol/L Na₂CO₃
Required
1. volume of CO₂
2. mass Na₂CO₃
Solution
1. mol K₂CO₃(MW=138 g/mol) :
= 69 : 138
= 0.5
mol ratio of K₂CO₃ : CO₂ = 1 : 1, so mol CO₂ = 0.5
Assume at RTP(25 C, 1 atm) 1 mol gas = 24 L, so volume CO₂ :
= 0.5 x 24 L
= 12 L
2. M Na₂CO₃ = 0.03 M
Volume = 1 L
mol Na₂CO₃ :
= M x V
= 0.03 x 1
= 0.03 moles
Mass Na₂CO₃(MW=106 g/mol) :
= mol x MW
= 0.03 x 106
= 3.18 g