Answer:
a) 4.31 m/s²
b) 215.5 m
Explanation:
a) According to Newton's first law of motion
The net force applied to particular mass produced acceleration, a, according to
F = ma
F = 140 N
m = 32.5 kg
a = ?
140 = 32.5 × a
a = 140/32.5 = 4.31 m/s²
b) Using the equations of motion, we can obtain the distance travelled by the object in t = 10 s
u = initial velocity of the probe = 0 m/s (since it was initially at rest)
a = 4.31 m/s²
t = 10 s
s = distance travelled = ?
s = ut + at²/2
s = 0 + (4.31×10²)/2 = 215.5 m
Answer:
Given,
Frame rate = 25 frames per second
To find,
Time interval between one frame and the next.
Solution,
We can simply solve this numerical problem by using the following process.
Now,
Number of frames = 25
Total time taken to display the given number of frames (ie. 25 frames) = 1 second
To calculate the time interval between one frame and next, we need to divide the time taken to display total number of frames by total number of frames.
So,
Time interval between one frame and next :
= Time taken to display total number of frames / Total frames
= 1/25
= 0.04 second
Hence, time interval between one frame and next is 0.04 second.
Answer:
(a) A = 
(b) 
(c) 
(d) 
Solution:
As per the question:
Radius of atom, r = 1.95
Now,
(a) For a simple cubic lattice, lattice constant A:
A = 2r
A = 
(b) For body centered cubic lattice:


(c) For face centered cubic lattice:


(d) For diamond lattice:


Answer:
The velocity of the man is 0.144 m/s
Explanation:
This is a case of conservation of momentum.
The momentum of the moving ball before it was caught must equal the momentum of the man and the ball after he catches the ball.
Mass of ball = 0.65 kg
Mass of the man = 54 kg
Velocity of the ball = 12.1 m/s
Before collision, momentum of the ball = mass x velocity
= 0.65 x 12.1 = 7.865 kg-m/s
After collision the momentum of the man and ball system is
(0.65 + 54)Vf = 54.65Vf
Where Vf is their final common velocity.
Equating the initial and final momentum,
7.865 = 54.65Vf
Vf = 7.865/54.65 = 0.144 m/s