1. circle graph
2. Bar graph
3. line graph
hope this helps
The change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
The given parameters;
- <em>Current flowing in the wire, I = 4.00 mA</em>
- <em>Initial diameter of the wire, d₁ = 4 mm = 0.004 m</em>
- <em>Final diameter of the wire, d₂ = 1 mm = 0.001 m</em>
- <em>Length of wire, L = 2.00 m</em>
- <em>Density of electron in the copper, n = 8.5 x 10²⁸ /m³</em>
<em />
The initial area of the copper wire;
![A_1 = \frac{\pi d^2}{4} = \frac{\pi \times (0.004)^2}{4} =1.257\times 10^{-5} \ m^2](https://tex.z-dn.net/?f=A_1%20%3D%20%5Cfrac%7B%5Cpi%20d%5E2%7D%7B4%7D%20%3D%20%5Cfrac%7B%5Cpi%20%5Ctimes%20%280.004%29%5E2%7D%7B4%7D%20%3D1.257%5Ctimes%2010%5E%7B-5%7D%20%5C%20m%5E2)
The final area of the copper wire;
![A_2 = \frac{\pi d^2}{4} = \frac{\pi (0.001)^2}{4} = 7.86\times 10^{-7} \ m^2](https://tex.z-dn.net/?f=A_2%20%3D%20%5Cfrac%7B%5Cpi%20d%5E2%7D%7B4%7D%20%3D%20%5Cfrac%7B%5Cpi%20%280.001%29%5E2%7D%7B4%7D%20%3D%207.86%5Ctimes%2010%5E%7B-7%7D%20%5C%20m%5E2)
The initial drift velocity of the electrons is calculated as;
![v_d_1 = \frac{I}{nqA_1} \\\\v_d_1 = \frac{4\times 10^{-3} }{8.5\times 10^{28} \times 1.6\times 10^{-19} \times 1.257\times 10^{-5}} \\\\v_d_1 = 2.34 \times 10^{-8} \ m/s](https://tex.z-dn.net/?f=v_d_1%20%3D%20%5Cfrac%7BI%7D%7BnqA_1%7D%20%5C%5C%5C%5Cv_d_1%20%3D%20%5Cfrac%7B4%5Ctimes%2010%5E%7B-3%7D%20%7D%7B8.5%5Ctimes%2010%5E%7B28%7D%20%5Ctimes%201.6%5Ctimes%2010%5E%7B-19%7D%20%5Ctimes%201.257%5Ctimes%2010%5E%7B-5%7D%7D%20%5C%5C%5C%5Cv_d_1%20%3D%202.34%20%5Ctimes%2010%5E%7B-8%7D%20%5C%20m%2Fs)
The final drift velocity of the electrons is calculated as;
![v_d_2 = \frac{I}{nqA_2} \\\\v_d_2 = \frac{4\times 10^{-3} }{8.5\times 10^{28} \times 1.6\times 10^{-19} \times 7.86\times 10^{-7}} \\\\v_d_2 = 3.74\times 10^{-7} \ m/s](https://tex.z-dn.net/?f=v_d_2%20%3D%20%5Cfrac%7BI%7D%7BnqA_2%7D%20%5C%5C%5C%5Cv_d_2%20%3D%20%5Cfrac%7B4%5Ctimes%2010%5E%7B-3%7D%20%7D%7B8.5%5Ctimes%2010%5E%7B28%7D%20%5Ctimes%201.6%5Ctimes%2010%5E%7B-19%7D%20%5Ctimes%207.86%5Ctimes%2010%5E%7B-7%7D%7D%20%5C%5C%5C%5Cv_d_2%20%3D%203.74%5Ctimes%2010%5E%7B-7%7D%20%20%5C%20m%2Fs)
The change in the mean drift velocity is calculated as;
![\Delta v = v_d_2 -v_d_1\\\\\Delta v = 3.74\times 10^{-7} \ m/s \ -\ 2.34 \times 10^{-8} \ m/s = 3.506\times 10^{-7} \ m/s](https://tex.z-dn.net/?f=%5CDelta%20v%20%3D%20v_d_2%20-v_d_1%5C%5C%5C%5C%5CDelta%20v%20%3D%203.74%5Ctimes%2010%5E%7B-7%7D%20%5C%20m%2Fs%20%5C%20-%5C%202.34%20%5Ctimes%2010%5E%7B-8%7D%20%5C%20m%2Fs%20%3D%203.506%5Ctimes%2010%5E%7B-7%7D%20%5C%20m%2Fs)
The time of motion of electrons for the initial wire diameter is calculated as;
![t_1 = \frac{L}{v_d_1} \\\\t_1 = \frac{2}{2.34\times 10^{-8}} \\\\t_1 = 8.547\times 10^{7} \ s](https://tex.z-dn.net/?f=t_1%20%3D%20%5Cfrac%7BL%7D%7Bv_d_1%7D%20%5C%5C%5C%5Ct_1%20%3D%20%5Cfrac%7B2%7D%7B2.34%5Ctimes%2010%5E%7B-8%7D%7D%20%5C%5C%5C%5Ct_1%20%3D%208.547%5Ctimes%2010%5E%7B7%7D%20%5C%20s)
The time of motion of electrons for the final wire diameter is calculated as;
![t_2 = \frac{L}{v_d_1} \\\\t_2= \frac{2}{3.74 \times 10^{-7}} \\\\t_2 = 5.348 \times 10^{6} \ s](https://tex.z-dn.net/?f=t_2%20%3D%20%5Cfrac%7BL%7D%7Bv_d_1%7D%20%5C%5C%5C%5Ct_2%3D%20%5Cfrac%7B2%7D%7B3.74%20%5Ctimes%2010%5E%7B-7%7D%7D%20%5C%5C%5C%5Ct_2%20%3D%205.348%20%5Ctimes%2010%5E%7B6%7D%20%5C%20s)
The average acceleration of the electrons is calculated as;
![a = \frac{\Delta v}{\Delta t} \\\\a = \frac{3.506 \times 10^{-7} }{(8.547\times 10^7)- (5.348\times 10^6)} \\\\a = 4.38\times 10^{-15} \ m/s^2](https://tex.z-dn.net/?f=a%20%3D%20%5Cfrac%7B%5CDelta%20v%7D%7B%5CDelta%20t%7D%20%5C%5C%5C%5Ca%20%3D%20%5Cfrac%7B3.506%20%5Ctimes%2010%5E%7B-7%7D%20%7D%7B%288.547%5Ctimes%2010%5E7%29-%20%285.348%5Ctimes%2010%5E6%29%7D%20%5C%5C%5C%5Ca%20%3D%204.38%5Ctimes%2010%5E%7B-15%7D%20%5C%20m%2Fs%5E2)
Thus, the change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
Learn more here: brainly.com/question/22406248
Answer:
![a_M=1.92a_A](https://tex.z-dn.net/?f=a_M%3D1.92a_A)
Explanation:
= Angular speed
= Distance of Mary = 11.5 ft
= Distance of Alex = 6 ft
Ratio of centripetal acceleration is given by
![\dfrac{a_M}{a_A}=\dfrac{\omega_M^2r_M}{\omega_A^2r_A}\\\Rightarrow \dfrac{a_M}{a_A}=\dfrac{r_M}{r_A}\\\Rightarrow a_M=a_A\dfrac{r_M}{r_A}\\\Rightarrow a_M=\dfrac{11.5}{6}a_A\\\Rightarrow a_M=1.92a_A](https://tex.z-dn.net/?f=%5Cdfrac%7Ba_M%7D%7Ba_A%7D%3D%5Cdfrac%7B%5Comega_M%5E2r_M%7D%7B%5Comega_A%5E2r_A%7D%5C%5C%5CRightarrow%20%5Cdfrac%7Ba_M%7D%7Ba_A%7D%3D%5Cdfrac%7Br_M%7D%7Br_A%7D%5C%5C%5CRightarrow%20a_M%3Da_A%5Cdfrac%7Br_M%7D%7Br_A%7D%5C%5C%5CRightarrow%20a_M%3D%5Cdfrac%7B11.5%7D%7B6%7Da_A%5C%5C%5CRightarrow%20a_M%3D1.92a_A)
Mary's centripetal acceleration is 1.92 times the centripetal acceleration of Alex
Refer to the diagram shown below.
W₁ = (4 kg)*(9.8 m/s²) = 39.2 N
W₂ = (1 kg)*(9.8 m/s²) = 9.8 N
The normal reaction on the 4-kg mass is
N = (39.2 N)*cos(25°) = 35.5273 N
The force acting down the inclined plane due to the weight is
F = (39.2 N)*sin(25°) = 16.5666 N
The net force that accelerates the 4-kg mass at a m/²s down the plane is
F - W₂ = (4 kg)*(a m/s²)
4a = 16.5666 - 9.8
a = 1.6917 m/s²
Answer: 1.69 m/s² (nearest hundredth)
I’m pretty sure 14 is mutations