Sound—energy<span> we can hear—travels only so far before it soaks away into the world around us. Until electrical </span>microphones<span>were invented in the late 19th century, there was no satisfactory way to send </span>sounds<span> to other places. You could shout, but that carried your words only a little further. You couldn't shout in New York City and make yourself heard in London. And you couldn't speak in 1715 and have someone listen to what you said a hundred years later! Remarkably, such things are possible today: by converting sound energy into electricity and information we can store, microphones make it possible to send the sounds of our voices, our music, and the noises in our world to other places and other times. How do microphones work? Let's take a closer look!</span>
Answer:
since each loop is ewuvivalent to one half wave lenght . the length of the string is equal to two halves of a wavelength . put in the form of an equation in the same reasoning also
Answer:
Yes
Explanation:
The four outer planets are all gas giants made primarily of hydrogen and helium. They have thick gaseous outer layers and liquid interiors.