Answer:
Spiral
i know it is so dont say nun people
Explanation:
Answer:
a) 1.73*10^5 J
b) 3645 N
Explanation:
106 km/h = 106 * 1000/3600 = 29.4 m/s
If KE = PE, then
mgh = 1/2mv²
gh = 1/2v²
h = v²/2g
h = 29.4² / 2 * 9.81
h = 864.36 / 19.62
h = 44.06 m
Loss of energy = mgΔh
E = 780 * 9.81 * (44.06 - 21.5)
E = 7651.8 * 22.56
E = 172624.6 J
Thus, the amount if energy lost is 1.73*10^5 J
Work done = Force * distance
Force = work done / distance
Force = 172624.6 / (21.5/sin27°)
Force = 172624.6 / 47.36
Force = 3645 N
Answer:
v = 10 m/s
Explanation:
Let's assume the wheel does not slip as it accelerates.
Energy theory is more straightforward than kinematics in my opinion.
Work done on the wheel
W = Fd = 45(12) = 540 J
Some is converted to potential energy
PE = mgh = 4(9.8)12sin30 = 235.2 J
As there is no friction mentioned, the remainder is kinetic energy
KE = 540 - 235.2 = 304.8 J
KE = ½mv² + ½Iω²
ω = v/R
KE = ½mv² + ½I(v/R)² = ½(m + I/R²)v²
v = √(2KE / (m + I/R²))
v = √(2(304.8) / (4 + 0.5/0.5²)) = √101.6
v = 10.07968...
Answer:
The velocity of the motorboat after 6s is 24 m/s.
Explanation:
Given;
acceleration of the motorboat, a = 4.0 m/s²
initial velocity of the motorboat, u = 0
time of motion of the motorboat = 6s
Apply the following kinematic equation to determine the velocity of the motorboat after 6 ;
v = u + at
v = 0 + (4 x 6)
v = 24 m/s
Therefore, the velocity of the motorboat after 6s is 24 m/s.
The mass of the astronaut is still 65 kilograms. Mass is constant or doesn't change no matter where you are.