Using the conservation of momentum,
ma*va1 + mb*vb1 = ma*va2 + mb*vb2
Let:
ma = mass of the ball
va = velocity of the ball
mb = mass of the man
vb = velocity of the man
The subscript 1 is known as initials while 2 is for finals.
Before the man throws the ball, he starts at rest, meaning the initial velocity of the ball and the initial velocity of the man are zero. So
0 = ma*va2 + mb*vb2
Given ma = 10 kg; va = 20 m/s; mb = 90 kg; vb is unknown, therefore
-(mb*vb2) = ma*va2
vb2 = -(ma*va2)/mb2 = -(10*20)/90 = -2.22 m/s
Notice that his velocity is negative because when he finally throws the ball (say to the right), he moves at the opposite direction (that is to the left) on which he stands on the frictionless surface.
Speed/ velocity/ how fast the car is moving!
Hope this assists you!
Answer:
<u><em>When sunlight shines through an orange solution, the violet, blue and green wavelengths are absorbed.</em></u> The other colors pass through.
The lord of the greeks answer d
Answer:
The Richter scale measures the largest wiggle (amplitude) on the recording, but other magnitude scales measure different parts of the earthquake. The USGS currently reports earthquake magnitudes using the Moment Magnitude scale, though many other magnitudes are calculated for research and comparison purposes.