Answer:
The magnitude of the centripetal acceleration increases by 16 times when the linear speed increases by 4 times.
Explanation:
The initial centripetal acceleration, a of the race-car around the circular track of radius , R with a linear speed v is a = v²/R.
When the linear speed of the race-car increases to v' = 4v, the centripetal acceleration a' becomes a' = v'²/R = (4v)²/R = 16v²/R.
So the centripetal acceleration, a' = 16v²/R.
To know how much the magnitude of the car's centripetal acceleration changes, we take the ratio a'/a = 16v²/R ÷ v²/R = 16
a'/a = 16
a' = 16a.
So the magnitude of the centripetal acceleration increases by 16 times when the linear speed increases by 4 times.
Well its C, cant show you the work its in my head sorry.
It can't be less than 250 N or the cart wouldn't move at all. That means there is only 1 answer. It's between not enough info or 250 N. The answer is 250 N. If it was any more, there would be acceleration.
Multiply by (1000 meters / 1 km).
Then multiply by (1 hour / 3600 seconds).
Both of those fractions are equal to ' 1 ', because the top
and bottom numbers are equal, so the multiplications
won't change the VALUE of the 72 km/hr. They'll only
change the units.
(72 km/hour) · (1000 meters / 1 km) · (1 hour / 3600 seconds)
= (72 · 1000 / 3600) (km·meter·hour / hour·km·second)
= 20 meter/second