Warmer air has molecules more spread out, so I'd say a decrease in air pressure.
The andwer of tye question is 3O2
Answer:
a). 53.78 m/s
b) 52.38 m/s
c) -75.58 m
Explanation:
See attachment for calculation
In the c part, The negative distance is telling us that the project went below the lunch point.
Answer:
35870474.30504 m
Explanation:
r = Distance from the surface
T = Time period = 24 h
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
m = Mass of the Earth = 5.98 × 10²⁴ kg
Radius of Earth = 
The gravitational force will balance the centripetal force


From Kepler's law we have relation

Distance from the center of the Earth would be

Answer:the pressure depends on gas and it will be half as much underwater
Explanation:
Water pressure increases with the depth of the water. This is because the weight of the column of water above the object increases. But a large, shallow pond may have more water in it than a small, deep pond.
This is due to an increase in hydrostatic pressure, the force per unit area exerted by a liquid on an object. The deeper you go under the sea, the greater the pressure of the water pushing down on you. For every 33 feet (10.06 meters) you go down, the pressure increases by one atmosphere .