The calculated coefficient of kinetic friction is 0.33125.'
The rate of kinetic friction the friction force to normal force ratio experienced by a body moving on a dry, uneven surface is known as k. The friction coefficient is the ratio of the normal force pressing two surfaces together to the frictional force preventing motion between them. Typically, it is represented by the Greek letter mu (). In terms of math, is equal to F/N, where F stands for frictional force and N for normal force.
given mass of the block=10 kg
spring constant k= 2250 Nm
now according to principal of conservation of energy we observe,
the energy possessed by the block initially is reduced by the friction between the points B and C and rest is used up in work done by the spring.
mgh= μ (mgl) +1/2 kx²
10 x 10 x 3= μ(600) +(1125) (0.09)
μ(600) =300 - 101.25
μ = 198.75÷600
μ =0.33125
The complete question is- A 10.0−kg block is released from rest at point A in Fig The track is frictionless except for the portion between point B and C, which has a length of 6.00m the block travels down the track, hits a spring of force constant 2250N/m, and compresses the spring 0.300m form its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between point Band (C)
Learn more about kinetic friction here-
brainly.com/question/13754413
#SPJ4
Therefore the world's record high temperature of 134.0°F (56.7°C) is held by Furnace Creek Ranch in Death Valley, California. That global high temperature was attained on July 10, 1913.
Answer:
A- Astronomical body
C- Galaxy
D- Comet
B- Moon
Hope this helps you! Have a great day!
As we know by the first law of thermodynamics

here we know that
Q = heat given to the system

W = work done by the system
now here we can say


now we can say that heat will be given as

now here we can say that Jin does the error in his first step while calculation of change in internal energy as he had to subtract it while he added the two energy
So best describe Jin's Error is
<em>B )For step 1, he should have subtracted 78 J from 180 J to find the change in internal energy. </em>
Answer:
Using clean, renewable, and readily available solar energy as fuel.
Preserving natural resources by not requiring the use of wood or other biomass fuels to cook.
Not producing dangerous emissions which pollute local environments and contribute to climate change.
Explanation: