Answer:
v=12.5 i + 12.5 j m/s
Explanation:
Given that
m₁=m₂ = m
m₃ = 2 m
Given that speed of the two pieces
u₁=- 25 j m/s
u₂ =- 25 i m/s
Lets take the speed of the third mass = v m/s
From linear momentum conservation
Pi= Pf
0 = m₁u₁+m₂u₂ + m₃ v
0 = -25 j m - 25 i m + 2 m v
2 v=25 j + 25 i m/s
v=12.5 i + 12.5 j m/s
Therefore the speed of the third mass will be v=12.5 i + 12.5 j m/s
Answer:
<u> </u><u>»</u><u> </u><u>Image</u><u> </u><u>distance</u><u> </u><u>:</u>

- v is image distance
- u is object distance, u is 10 cm
- f is focal length, f is 5 cm

<u> </u><u>»</u><u> </u><u>Magnification</u><u> </u><u>:</u>
• Let's derive this formula from the lens formula:

» Multiply throughout by fv

• But we know that, v/u is M

- v is image distance, v is 10 cm
- f is focal length, f is 5 cm
- M is magnification.

<u> </u><u>»</u><u> </u><u>Nature</u><u> </u><u>of</u><u> </u><u>Image</u><u> </u><u>:</u>
- Image is magnified
- Image is erect or upright
- Image is inverted
- Image distance is identical to object distance.
Answer: a network of several radio telescopes wired together
Explanation:
A radio interferometer combines signals of several radio telescopes which are used in astronomical observations simultaneously to simulate a discretely-sampled single telescope of very large aperture
Interferometer, an instrument that uses the interference patterns formed by waves to measure certain characteristics of the waves themselves or of materials that reflect, refract, or transmit the waves. Interferometers can also be used to make precise measurements of distance.
When the diver reaches maximum height, the upward velocity will be zero.
We shall use the formula
v^2 = u^2 - 2gh
where
v = 0 (velocity at maximum height)
u = 1.2 m/s, intial upward velocity
g = -9.8 m/s^2, gravitational acceleration (downward)
h = maximum height attained above the diving board.
Therefore
0 = 1.2^2 - 2*9.8*h
h = 1.2^2/(2*9.8) = 0.0735 m
Answer: 0.074 m (nearest thousandth)
Answer:
346 * 10⁶ m
Explanation:
The force of gravity of the earth that will cancel the the force of gravity exerted by the moon will be equal to each other
Let
be the force of gravity exerted by the earth
and let
be the force of gravity exerted by the moon
According to Newton's law of universal gravitation, the force of attraction between two different masses, m₁ and m₂ separated by a distance, d, is given by:

Mass of the earth, 
Mass of the moon, 
Mass of the satellite, 
...............................(1)
The earth and the moon are separated by a distance, 3.844 * 10⁸ m
............................(2)
Equating equations (1) and (2)


Factorising out 

Solving for d in the quadratic equation above:
d = 346 * 10⁶ m