1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liula [17]
3 years ago
7

A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th

e periodSuppose the mass is displaced 0.4 meters from its equilibrium position and released from rest. What is the amplitude of the motionSuppose the mass is released from the equilibrium position with an initial velocity of 0.5 meters/sec. What is the amplitude of the motion? Suppose the mass is is displaced 0.4 meters from the equilibrium position and released with an initial velocity of 0.5 meters/sec. What is the amplitude of the motion? What is the maximum velocity? m/s
Physics
2 answers:
Scorpion4ik [409]3 years ago
4 0

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

inna [77]3 years ago
4 0

Answer:

1) The frequency of the simple harmonic motion is f=0.42\frac{1}{s}.

  The period is T=2.37s.

2) If the mass is displaced 0.4 m from its equilibrium position and released from rest, the amplitude of the motion is A=0.4m.

3) If the mass is released from its equilibrium position with an initial velocity of 0.5 m/s, the amplitude of the motion is A=0.19m.

4) If the mass is displaced 0.4 m from its equilibrium position and released with an initial velocity of 0.5 m/s, the amplitude of the motion is A=0.44m and the maximum velocity is v_{max} =1.16\frac{m}{s}.

Explanation:

1) The simple harmonic motion frequency in a system like a mass attached to a spring is determined by the spring constant k, that indicates the stiffness of the spring, and the mass m:

                                             f=\frac{w}{2\pi} =\frac{1}{2\pi} \sqrt{\frac{k}{m}}

where w=\sqrt{\frac{k}{m}} is the angular frequency

we are told that k=7\frac{N}{m} and m=1kg

                                  f=\frac{1}{2\pi}\sqrt{\frac{7N/m}{1kg}}

                                  f=\frac{1}{2\pi}\sqrt{7\frac{1}{s^{2}}}

                                  f=0.42\frac{1}{s}

the period T is

                                  T=\frac{1}{f}

                                  T=2\pi \sqrt{\frac{m}{k}}

                                  T=2.37s

2) The amplitude is the maximum displacement from equilibrium. If there are no dissipative forces it remains the same throughout the movement. We are told that the mass is displaced 0.4 m from its equilibrium position and released from rest. Then the amplitude of the motion is A=0.4m.

3) Depending on the initial conditions we will choose sine or cosine, both periodic, for the expression of displacement as a function of time x(t). If the mass is displaced a given lenght at t=0 we use cosine. If the mass is at equilibrium position x=0 at t=0 we use sine.

We are told the mass is released from its equilibrium position x=0 at t=0 with an initial velocity of 0.5 m/s. We substitute those values in the expression of velocity that we derive from the expression of displacement as a function of time. We assume the phase to be \phi=0.

                                    x(t)=Asin(wt-\phi)

                                    \frac{dx}{dt}=v(t)=Awcos(wt-\phi)

                                   v(t=0)=Aw=A\sqrt{\frac{k}{m}}

                                   0.5\frac{m}{s} =A\sqrt{7} \frac{1}{s}

                                       A=0.19m

4) We are told the mass is displaced 0.4 m from its equilibrium position and released with an initial velocity of 0.5 m/s. The expressions of velocity and of displacement as a function of time are:

                                      x(t)=Acos(wt-\phi)

                                      v(t)=-Awsin(wt-\phi)

if we substitute t=0

                                       x_{0} =x(t=0)=Acos(\phi)

                                       v_{0}=v(t=0)=-Awsin(\phi)

then we use the trigonometric identities cos(-\phi)=cos(\phi) and sin(-\phi)=-sin(\phi)

                                        x_{0} ^{2}=A^{2}cos(\phi)^{2}

                                        \frac{v_{0} ^{2}}{w^{2}} =A^{2}sin(\phi)^{2}

if we add this two expressions we get

                                        x_{0}^{2}+\frac{v_{0} ^{2}}{w^{2}} =A^{2}(sin(\phi)^{2}+cos(\phi)^{2})            

we use the trigonometric identity (sin(\phi)^{2}+cos(\phi)^{2})=1 to get

                                        A=\sqrt{x_{0}^{2}+\frac{v_{0} ^{2}}{w^{2}}}A=\sqrt{(0.4)^{2}m^{2}+\frac{(0.5)^{2}\frac{m^{2}}{s^{2}}}{(\sqrt{7})^{2}\frac{1}{s^{2}}}}

                                        A=\sqrt{(0.4)^{2}+\frac{(0.5)^{2}}{(\sqrt{7})^{2}})m^{2}}

                                             A=0.44m

maximum velocity occurs when sin(wt-\phi)=-1 in the expression of v(t)

                                         v_{max}=Aw

                                         v_{max}=0.44m .\sqrt{7} \frac{1}{s}

                                         v_{max} =1.16\frac{m}{s}

                                   

                                 

You might be interested in
What would you have loved to press the pause button on so you could go deeper
kiruha [24]

Answer:

~Banana Fish~

3 0
3 years ago
Una partícula se mueve en el plano XY efectúa un desplazamiento mientras actúa sobre ella una fuerza constante. X= (4i + 3j) m,
dsp73

Answer:

a) La magnitud del desplazamiento es de 5 m

La magnitud de la fuerza es 20 N

b) El trabajo realizado por la fuerza es de 100 J

c) El ángulo entre la fuerza y el plano es 0 °

Explanation:

a) La magnitud del desplazamiento se encuentra por la relación;

\left | X \right | = \sqrt{X_{x}^{2}+X_{y}^{2}}

Lo que da;

\left | X \right | = \sqrt{4^{2}+3^{2}} = 5 \ m

De manera similar, la magnitud de la fuerza, F, se encuentra como sigue;

\left | F \right | = \sqrt{F_{x}^{2}+F_{y}^{2}}

Lo que da;

\left | F \right | = \sqrt{16^{2}+12^{2}} = 20 \ N

b) El trabajo, W, realizado por la fuerza = Fuerza, F × Distancia, X

∴ Ancho = 20 N × 5 m = 100 N · m = 100 J

c) La dirección de la fuerza viene dada por la siguiente fórmula;

tan^{-1} \left (\dfrac{F_y}{F_x} \right ) = tan^{-1} \left (\dfrac{12}{16} \right )  = 38.9^{\circ}

La dirección del plano viene dada por la siguiente fórmula;

tan^{-1} \left (\dfrac{X_y}{X_x} \right ) = tan^{-1} \left (\dfrac{3}{4} \right )  = 38.9^{\circ}

Por tanto, el ángulo entre la fuerza y el plano = 0 °

La fuerza actúa a lo largo del plano.

6 0
3 years ago
What investigations allow for the control of variables
lina2011 [118]
Most as long the hypothesis is a good answer and can be answered 
7 0
3 years ago
Read 2 more answers
What are the magnitude and direction of the acceleration of an electron at a point where the electric field has magnitude 6100 n
Hoochie [10]

Force on electron due to electric field is given by

F = eE

F = 1.6 * 10^{-19}* 6100

F = 9.76 * 10^{-16} N

now the acceleration is given by

a = \frac{F}{m}

a = \frac{9.76 * 10^{-16}}{9.1 * 10^{-31}}

a = 1.07 * 10^{15} m/s^2

so above is the magnitude of acceleration and its direction is opposite to field as electron is negatively charged so direction is towards SOUTH

4 0
4 years ago
4. How much force is required to stop a 60 kg person traveling at 30 m/s during a time of a)
11111nata11111 [884]

Explanation:

F = ma, and a = Δv / Δt.

F = m Δv / Δt

Given: m = 60 kg and Δv = -30 m/s.

a) Δt = 5.0 s

F = (60 kg) (-30 m/s) / (5.0 s)

F = -360 N

b) Δt = 0.50 s

F = (60 kg) (-30 m/s) / (0.50 s)

F = -3600 N

c) Δt = 0.05 s

F = (60 kg) (-30 m/s) / (0.05 s)

F = -36000 N

3 0
4 years ago
Other questions:
  • Nitromethane (ch3no2) burns in air to produce significant amounts of heat. 2 ch3no2(l) + 3 2 o2( g) ¡ 2 co2( g) + 3 h2o(l) + n2
    5·2 answers
  • Which of these best describes how an appropriate star chart is selected to locate objects in the sky
    10·1 answer
  • A golf ball with an initial angle of 34° lands exactly 240 m down the range on a level course.
    11·2 answers
  • A diesel engine a. uses only air during the intake stroke. b. is an external-combustion engine. c. uses a spark plug to ignite f
    5·2 answers
  • Science is hard sometimes help please!
    10·1 answer
  • a steel sphere and brass ring have diameter 25cm and 24.9cm at 15°C.If the sphere and the ring are heated together.what is the t
    14·1 answer
  • Choose the answer that best describes hydrostatic equilibrium.
    11·2 answers
  • Can somebody please help me? PLEASE
    8·1 answer
  • https://brainly.com/question/add?entry=1642&task_content=Tania+was+asked+to+describe+the+relashio+of+electrity+and+magnetism
    12·1 answer
  • What is the difference between an empirical issue and ethical issue? (sociology question)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!