1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liula [17]
3 years ago
7

A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th

e periodSuppose the mass is displaced 0.4 meters from its equilibrium position and released from rest. What is the amplitude of the motionSuppose the mass is released from the equilibrium position with an initial velocity of 0.5 meters/sec. What is the amplitude of the motion? Suppose the mass is is displaced 0.4 meters from the equilibrium position and released with an initial velocity of 0.5 meters/sec. What is the amplitude of the motion? What is the maximum velocity? m/s
Physics
2 answers:
Scorpion4ik [409]3 years ago
4 0

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

inna [77]3 years ago
4 0

Answer:

1) The frequency of the simple harmonic motion is f=0.42\frac{1}{s}.

  The period is T=2.37s.

2) If the mass is displaced 0.4 m from its equilibrium position and released from rest, the amplitude of the motion is A=0.4m.

3) If the mass is released from its equilibrium position with an initial velocity of 0.5 m/s, the amplitude of the motion is A=0.19m.

4) If the mass is displaced 0.4 m from its equilibrium position and released with an initial velocity of 0.5 m/s, the amplitude of the motion is A=0.44m and the maximum velocity is v_{max} =1.16\frac{m}{s}.

Explanation:

1) The simple harmonic motion frequency in a system like a mass attached to a spring is determined by the spring constant k, that indicates the stiffness of the spring, and the mass m:

                                             f=\frac{w}{2\pi} =\frac{1}{2\pi} \sqrt{\frac{k}{m}}

where w=\sqrt{\frac{k}{m}} is the angular frequency

we are told that k=7\frac{N}{m} and m=1kg

                                  f=\frac{1}{2\pi}\sqrt{\frac{7N/m}{1kg}}

                                  f=\frac{1}{2\pi}\sqrt{7\frac{1}{s^{2}}}

                                  f=0.42\frac{1}{s}

the period T is

                                  T=\frac{1}{f}

                                  T=2\pi \sqrt{\frac{m}{k}}

                                  T=2.37s

2) The amplitude is the maximum displacement from equilibrium. If there are no dissipative forces it remains the same throughout the movement. We are told that the mass is displaced 0.4 m from its equilibrium position and released from rest. Then the amplitude of the motion is A=0.4m.

3) Depending on the initial conditions we will choose sine or cosine, both periodic, for the expression of displacement as a function of time x(t). If the mass is displaced a given lenght at t=0 we use cosine. If the mass is at equilibrium position x=0 at t=0 we use sine.

We are told the mass is released from its equilibrium position x=0 at t=0 with an initial velocity of 0.5 m/s. We substitute those values in the expression of velocity that we derive from the expression of displacement as a function of time. We assume the phase to be \phi=0.

                                    x(t)=Asin(wt-\phi)

                                    \frac{dx}{dt}=v(t)=Awcos(wt-\phi)

                                   v(t=0)=Aw=A\sqrt{\frac{k}{m}}

                                   0.5\frac{m}{s} =A\sqrt{7} \frac{1}{s}

                                       A=0.19m

4) We are told the mass is displaced 0.4 m from its equilibrium position and released with an initial velocity of 0.5 m/s. The expressions of velocity and of displacement as a function of time are:

                                      x(t)=Acos(wt-\phi)

                                      v(t)=-Awsin(wt-\phi)

if we substitute t=0

                                       x_{0} =x(t=0)=Acos(\phi)

                                       v_{0}=v(t=0)=-Awsin(\phi)

then we use the trigonometric identities cos(-\phi)=cos(\phi) and sin(-\phi)=-sin(\phi)

                                        x_{0} ^{2}=A^{2}cos(\phi)^{2}

                                        \frac{v_{0} ^{2}}{w^{2}} =A^{2}sin(\phi)^{2}

if we add this two expressions we get

                                        x_{0}^{2}+\frac{v_{0} ^{2}}{w^{2}} =A^{2}(sin(\phi)^{2}+cos(\phi)^{2})            

we use the trigonometric identity (sin(\phi)^{2}+cos(\phi)^{2})=1 to get

                                        A=\sqrt{x_{0}^{2}+\frac{v_{0} ^{2}}{w^{2}}}A=\sqrt{(0.4)^{2}m^{2}+\frac{(0.5)^{2}\frac{m^{2}}{s^{2}}}{(\sqrt{7})^{2}\frac{1}{s^{2}}}}

                                        A=\sqrt{(0.4)^{2}+\frac{(0.5)^{2}}{(\sqrt{7})^{2}})m^{2}}

                                             A=0.44m

maximum velocity occurs when sin(wt-\phi)=-1 in the expression of v(t)

                                         v_{max}=Aw

                                         v_{max}=0.44m .\sqrt{7} \frac{1}{s}

                                         v_{max} =1.16\frac{m}{s}

                                   

                                 

You might be interested in
What is a domain?
Pani-rosa [81]

Answer:

B. a region of similarly oriented electrons in motion

Explanation:

3 0
3 years ago
Which one i need help
Lostsunrise [7]

Answer:

C

Explanation:

7 0
3 years ago
You are part of a mission to Mars and have been assigned the task of designing balloons for the purpose of carrying scientific i
melomori [17]

Answer:

<em>The radius of the balloon is R=  0.974 m</em>

Explanation:

Atmospheric density on the surface of mars ρ  = 0.0154 kg/m³

Mass  density of balloon σ  5 gm/m² = 0.005 kg/m²

Total mass of balloon M  = density of balloon* surface area

The balloon is considered as sphere

Surface area of sphere is given by  4π R²

Mass of balloon is M =σ *4πR²

                      M= (0.005 kg/m²)*(4π R²)

Volume of balloon is given by  \frac{4}{3} πR³

Density of atmosphere of mass is given by  

   ρ = Mass of balloon/volume of  balloon

       =(0.005 kg/m²)*(4π R²)/  \frac{4}{3} πR³

Re arranging R

R =  \frac{3*0.005 kg/m²}{ 0.0154 kg/m³}

   R = 0.974 m

<em>The radius of the balloon is R=  0.974 m</em>

<em></em>

3 0
4 years ago
An electromagnetic wave in a vacuum has a wavelength of 0.032 m. What is its frequency?
Sergio [31]
L=wavelength
L=0.032
c=Lf
f=c/L
f=3e8/0.032
f=9.375GHz
7 0
3 years ago
Rank the tensions in the ropes, t1, t2, and t3, from smallest to largest, when the boxes are in motion and there is no friction
gizmo_the_mogwai [7]
<span>AS T1,T2,T3 are the tensions in the ropes,assuming that there are Three blocks of mass 3m, 2m, and m.T3 is the string between 3m and 2m,T2 is the string between 2m and m ,T1 is the string attached to m thus T1 pulls the whole set of blocks along, so it must be the largest. T2 pulls the last two masses, but T3 only pulls the last mass, so T3 < T2 < T1.</span>
5 0
3 years ago
Other questions:
  • A ___ is formed from two pieces of different metals stuck together lengthwise.
    11·2 answers
  • What is a depression that usually fills with water to form lakes or pond?
    12·2 answers
  • what is the wavelength of radio waves transmitted by an FM station at 90MHz where 1M=10^6, and speed of radiowave is 3*10^8m/s
    11·1 answer
  • When the wagon's brakes are off, the engine pulls the wagon forwards. A
    12·1 answer
  • The existence of which aspect of the universe supports the big bang theory? cosmic background radiation galactic clusters irregu
    14·2 answers
  • A piece of aluminum (bulk modulus 7.1 x 1010 N/m2) is placed in a vacuum chamber where the air pressure is 0.781 x 105 Pa. The v
    10·1 answer
  • FROM THE _____ WHOLE WATER CYCLE STARTS ALL OVER AGAIN
    5·2 answers
  • 16. Two capacitors have an equivalent
    5·1 answer
  • Large radio telescopes, like the one in Arecibo, Puerto Rico, can detect extremely weak signals. Suppose one radio telescope is
    7·1 answer
  • An object that weighs 2.450 N is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period o
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!