1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liula [17]
2 years ago
7

A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th

e periodSuppose the mass is displaced 0.4 meters from its equilibrium position and released from rest. What is the amplitude of the motionSuppose the mass is released from the equilibrium position with an initial velocity of 0.5 meters/sec. What is the amplitude of the motion? Suppose the mass is is displaced 0.4 meters from the equilibrium position and released with an initial velocity of 0.5 meters/sec. What is the amplitude of the motion? What is the maximum velocity? m/s
Physics
2 answers:
Scorpion4ik [409]2 years ago
4 0

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

inna [77]2 years ago
4 0

Answer:

1) The frequency of the simple harmonic motion is f=0.42\frac{1}{s}.

  The period is T=2.37s.

2) If the mass is displaced 0.4 m from its equilibrium position and released from rest, the amplitude of the motion is A=0.4m.

3) If the mass is released from its equilibrium position with an initial velocity of 0.5 m/s, the amplitude of the motion is A=0.19m.

4) If the mass is displaced 0.4 m from its equilibrium position and released with an initial velocity of 0.5 m/s, the amplitude of the motion is A=0.44m and the maximum velocity is v_{max} =1.16\frac{m}{s}.

Explanation:

1) The simple harmonic motion frequency in a system like a mass attached to a spring is determined by the spring constant k, that indicates the stiffness of the spring, and the mass m:

                                             f=\frac{w}{2\pi} =\frac{1}{2\pi} \sqrt{\frac{k}{m}}

where w=\sqrt{\frac{k}{m}} is the angular frequency

we are told that k=7\frac{N}{m} and m=1kg

                                  f=\frac{1}{2\pi}\sqrt{\frac{7N/m}{1kg}}

                                  f=\frac{1}{2\pi}\sqrt{7\frac{1}{s^{2}}}

                                  f=0.42\frac{1}{s}

the period T is

                                  T=\frac{1}{f}

                                  T=2\pi \sqrt{\frac{m}{k}}

                                  T=2.37s

2) The amplitude is the maximum displacement from equilibrium. If there are no dissipative forces it remains the same throughout the movement. We are told that the mass is displaced 0.4 m from its equilibrium position and released from rest. Then the amplitude of the motion is A=0.4m.

3) Depending on the initial conditions we will choose sine or cosine, both periodic, for the expression of displacement as a function of time x(t). If the mass is displaced a given lenght at t=0 we use cosine. If the mass is at equilibrium position x=0 at t=0 we use sine.

We are told the mass is released from its equilibrium position x=0 at t=0 with an initial velocity of 0.5 m/s. We substitute those values in the expression of velocity that we derive from the expression of displacement as a function of time. We assume the phase to be \phi=0.

                                    x(t)=Asin(wt-\phi)

                                    \frac{dx}{dt}=v(t)=Awcos(wt-\phi)

                                   v(t=0)=Aw=A\sqrt{\frac{k}{m}}

                                   0.5\frac{m}{s} =A\sqrt{7} \frac{1}{s}

                                       A=0.19m

4) We are told the mass is displaced 0.4 m from its equilibrium position and released with an initial velocity of 0.5 m/s. The expressions of velocity and of displacement as a function of time are:

                                      x(t)=Acos(wt-\phi)

                                      v(t)=-Awsin(wt-\phi)

if we substitute t=0

                                       x_{0} =x(t=0)=Acos(\phi)

                                       v_{0}=v(t=0)=-Awsin(\phi)

then we use the trigonometric identities cos(-\phi)=cos(\phi) and sin(-\phi)=-sin(\phi)

                                        x_{0} ^{2}=A^{2}cos(\phi)^{2}

                                        \frac{v_{0} ^{2}}{w^{2}} =A^{2}sin(\phi)^{2}

if we add this two expressions we get

                                        x_{0}^{2}+\frac{v_{0} ^{2}}{w^{2}} =A^{2}(sin(\phi)^{2}+cos(\phi)^{2})            

we use the trigonometric identity (sin(\phi)^{2}+cos(\phi)^{2})=1 to get

                                        A=\sqrt{x_{0}^{2}+\frac{v_{0} ^{2}}{w^{2}}}A=\sqrt{(0.4)^{2}m^{2}+\frac{(0.5)^{2}\frac{m^{2}}{s^{2}}}{(\sqrt{7})^{2}\frac{1}{s^{2}}}}

                                        A=\sqrt{(0.4)^{2}+\frac{(0.5)^{2}}{(\sqrt{7})^{2}})m^{2}}

                                             A=0.44m

maximum velocity occurs when sin(wt-\phi)=-1 in the expression of v(t)

                                         v_{max}=Aw

                                         v_{max}=0.44m .\sqrt{7} \frac{1}{s}

                                         v_{max} =1.16\frac{m}{s}

                                   

                                 

You might be interested in
A baseball player hits a ball with 400 n of force.how much does the ball exert on the bat
uranmaximum [27]

Answer:

The ball exerts a force of 400 N on the bat.

Explanation:

Given that,

A baseball player hits a ball with 400 N of force.

We need to find the force the ball exert on the bat.

We know that,

According to Newton's third law, when object 1 exerts a force on an object 2, then object 2 will exert a force on object 1 but in opposite direction.

So, the ball exerts a force of 400 N on the bat.

4 0
2 years ago
Friction is a ____________ force<br> a. Artificial<br> b. Natural<br> c. Pessimistic<br> d. Negative
Daniel [21]

Answer:

natural is the answer

5 0
2 years ago
Read 2 more answers
Calculate the force exerted by a mental ball having a mass of 70kg moving with speed of 20m/s&gt;2
lord [1]

Answer:

F = 1400 N

Explanation:

It is given that,

Mass of the ball, m = 70 kg

It is moving with an acceleration of 20 m/s². We need to find the force exerted by the ball.

Force is given by the product of mass and acceleration. So,

F = ma

F=70\ kg\times \ 20m/s^2\\\\F=1400\ N

So, the force of 1400 N is exerted by a metal ball.

8 0
3 years ago
11. Trait theory claims that
svetoff [14.1K]
A. people from the same location share the same personality type.
3 0
1 year ago
I believe Newton's 1st law is
Bogdan [553]

Answer:

The first law states that if the net force is zero, then the velocity of the object is constant.

5 0
2 years ago
Other questions:
  • You're going 70mph, how long does it take to go 70 miles
    13·1 answer
  • A glider of mass 0.240 kg is on a frictionless, horizontal track, attached to a horizontal spring of force constant 6.00 N/m. In
    14·1 answer
  • While a constant total force of 17 n is exerted on a cart, the cart's acceleration is 5 m/s2. find the mass of the cart?
    12·1 answer
  • Propane (C3H8combines with oxygen gas (O2to form carbon dioxide (CO2and water (H2O). Describe the number and type of atoms for a
    8·1 answer
  • Please help !!!!!!!!,
    14·1 answer
  • An important news announcement is transmitted by radio waves to people sitting next to their radios 42 km from the station and b
    14·1 answer
  • Four mass–spring systems oscillate in simple harmonic motion. Rank the periods of oscillation for the mass–spring systems from l
    5·2 answers
  • Help me fast!!!
    11·2 answers
  • PLEASE HELP! Need this ASAP (in 10 minutes)
    11·2 answers
  • In a chemical reaction, the bonds in the molecules
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!