1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liula [17]
2 years ago
7

A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th

e periodSuppose the mass is displaced 0.4 meters from its equilibrium position and released from rest. What is the amplitude of the motionSuppose the mass is released from the equilibrium position with an initial velocity of 0.5 meters/sec. What is the amplitude of the motion? Suppose the mass is is displaced 0.4 meters from the equilibrium position and released with an initial velocity of 0.5 meters/sec. What is the amplitude of the motion? What is the maximum velocity? m/s
Physics
2 answers:
Scorpion4ik [409]2 years ago
4 0

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

inna [77]2 years ago
4 0

Answer:

1) The frequency of the simple harmonic motion is f=0.42\frac{1}{s}.

  The period is T=2.37s.

2) If the mass is displaced 0.4 m from its equilibrium position and released from rest, the amplitude of the motion is A=0.4m.

3) If the mass is released from its equilibrium position with an initial velocity of 0.5 m/s, the amplitude of the motion is A=0.19m.

4) If the mass is displaced 0.4 m from its equilibrium position and released with an initial velocity of 0.5 m/s, the amplitude of the motion is A=0.44m and the maximum velocity is v_{max} =1.16\frac{m}{s}.

Explanation:

1) The simple harmonic motion frequency in a system like a mass attached to a spring is determined by the spring constant k, that indicates the stiffness of the spring, and the mass m:

                                             f=\frac{w}{2\pi} =\frac{1}{2\pi} \sqrt{\frac{k}{m}}

where w=\sqrt{\frac{k}{m}} is the angular frequency

we are told that k=7\frac{N}{m} and m=1kg

                                  f=\frac{1}{2\pi}\sqrt{\frac{7N/m}{1kg}}

                                  f=\frac{1}{2\pi}\sqrt{7\frac{1}{s^{2}}}

                                  f=0.42\frac{1}{s}

the period T is

                                  T=\frac{1}{f}

                                  T=2\pi \sqrt{\frac{m}{k}}

                                  T=2.37s

2) The amplitude is the maximum displacement from equilibrium. If there are no dissipative forces it remains the same throughout the movement. We are told that the mass is displaced 0.4 m from its equilibrium position and released from rest. Then the amplitude of the motion is A=0.4m.

3) Depending on the initial conditions we will choose sine or cosine, both periodic, for the expression of displacement as a function of time x(t). If the mass is displaced a given lenght at t=0 we use cosine. If the mass is at equilibrium position x=0 at t=0 we use sine.

We are told the mass is released from its equilibrium position x=0 at t=0 with an initial velocity of 0.5 m/s. We substitute those values in the expression of velocity that we derive from the expression of displacement as a function of time. We assume the phase to be \phi=0.

                                    x(t)=Asin(wt-\phi)

                                    \frac{dx}{dt}=v(t)=Awcos(wt-\phi)

                                   v(t=0)=Aw=A\sqrt{\frac{k}{m}}

                                   0.5\frac{m}{s} =A\sqrt{7} \frac{1}{s}

                                       A=0.19m

4) We are told the mass is displaced 0.4 m from its equilibrium position and released with an initial velocity of 0.5 m/s. The expressions of velocity and of displacement as a function of time are:

                                      x(t)=Acos(wt-\phi)

                                      v(t)=-Awsin(wt-\phi)

if we substitute t=0

                                       x_{0} =x(t=0)=Acos(\phi)

                                       v_{0}=v(t=0)=-Awsin(\phi)

then we use the trigonometric identities cos(-\phi)=cos(\phi) and sin(-\phi)=-sin(\phi)

                                        x_{0} ^{2}=A^{2}cos(\phi)^{2}

                                        \frac{v_{0} ^{2}}{w^{2}} =A^{2}sin(\phi)^{2}

if we add this two expressions we get

                                        x_{0}^{2}+\frac{v_{0} ^{2}}{w^{2}} =A^{2}(sin(\phi)^{2}+cos(\phi)^{2})            

we use the trigonometric identity (sin(\phi)^{2}+cos(\phi)^{2})=1 to get

                                        A=\sqrt{x_{0}^{2}+\frac{v_{0} ^{2}}{w^{2}}}A=\sqrt{(0.4)^{2}m^{2}+\frac{(0.5)^{2}\frac{m^{2}}{s^{2}}}{(\sqrt{7})^{2}\frac{1}{s^{2}}}}

                                        A=\sqrt{(0.4)^{2}+\frac{(0.5)^{2}}{(\sqrt{7})^{2}})m^{2}}

                                             A=0.44m

maximum velocity occurs when sin(wt-\phi)=-1 in the expression of v(t)

                                         v_{max}=Aw

                                         v_{max}=0.44m .\sqrt{7} \frac{1}{s}

                                         v_{max} =1.16\frac{m}{s}

                                   

                                 

You might be interested in
Help me please !!!!!
bezimeni [28]

Answer:

confounding cause they had exposure to many programmes

8 0
3 years ago
Read 2 more answers
(8c7p26) During spring semester at MIT, residents of the parallel buildings of the East Campus dorms battle one another with lar
likoan [24]

Answer: 1175 J

Explanation:

Hooke's Law states that "the strain in a solid is proportional to the applied stress within the elastic limit of that solid."

Given

Spring constant, k = 102 N/m

Extension of the hose, x = 4.8 m

from the question, x(f) = 0 and x(i) = maximum elongation = 4.8 m

Work done =

W = 1/2 k [x(i)² - x(f)²]

Since x(f) = 0, then

W = 1/2 k x(i)²

W = 1/2 * 102 * 4.8²

W = 1/2 * 102 * 23.04

W = 1/2 * 2350.08

W = 1175.04

W = 1175 J

Therefore, the hose does a work of exactly 1175 J on the balloon

7 0
3 years ago
Describe the changes of motion when marble is moved from one viewpoint to another.
slavikrds [6]

Answer:

Explanation:

according to Newton First Law of Motion (Law of Inertia); An object at rest will stay at rest, forever, as long as nothing pushes or pulls on it. An object in motion will stay in motion, traveling in a straight line, forever, until something pushes or pulls on it.

the marble will move in a straight line

5 0
3 years ago
What is a literature review?<br>​
almond37 [142]

Answer: A literature review consists of an overview, a summary, and an evaluation (“critique”) of the current state of knowledge about a specific area of research.

Explanation:

7 0
2 years ago
(b) The output current of the generator is 2.0A. The output potential difference (p.d.) of the
Luden [163]

Answer:

P = 22 watts

Explanation:

Given that,

The output power of the generator = 2 a

The output potential difference = 11 V

We need to find the output power of the generator. The formula for the output power is given by :

P=V\times I\\\\P=11\times 2\\\\P=22\ W

So, the output power of the generator is equal to 22 Watts.

8 0
2 years ago
Other questions:
  • For all simple machines, when the output force is greater than the input force,
    11·1 answer
  • If the tensile strength of the Kevlar 49 fibers is 0.550 x 106 psi and that of epoxy resin is 11.0 x103 psi, calculate the stren
    5·1 answer
  • 9. How much work is done when a 15kg box is lifted to a height of 2 meters?
    14·1 answer
  • How do mass and energy affect the acceleration of a rocket
    13·1 answer
  • Fossils cannot be used to explain changes in the earth. True or false
    6·2 answers
  • after the Collision the two cars stick together find the initial velocity of the car on the right hand side​
    9·1 answer
  • 10.0 ppm 10.4 ppm 10.2 ppm 10.8 ppm 10.1 ppm 10.5 ppm 10.1 ppm Using the new instrument on the first day the technicians got a v
    12·1 answer
  • What has more kinetic energy 15 kg ball rolling north at 15 m/s or a 15 kg ball rolling backwards at 7m/s
    11·1 answer
  • How would you produce electricity using a magnet
    7·1 answer
  • What is the net work doneon the object over the distance shown?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!