1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liula [17]
3 years ago
7

A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th

e periodSuppose the mass is displaced 0.4 meters from its equilibrium position and released from rest. What is the amplitude of the motionSuppose the mass is released from the equilibrium position with an initial velocity of 0.5 meters/sec. What is the amplitude of the motion? Suppose the mass is is displaced 0.4 meters from the equilibrium position and released with an initial velocity of 0.5 meters/sec. What is the amplitude of the motion? What is the maximum velocity? m/s
Physics
2 answers:
Scorpion4ik [409]3 years ago
4 0

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

inna [77]3 years ago
4 0

Answer:

1) The frequency of the simple harmonic motion is f=0.42\frac{1}{s}.

  The period is T=2.37s.

2) If the mass is displaced 0.4 m from its equilibrium position and released from rest, the amplitude of the motion is A=0.4m.

3) If the mass is released from its equilibrium position with an initial velocity of 0.5 m/s, the amplitude of the motion is A=0.19m.

4) If the mass is displaced 0.4 m from its equilibrium position and released with an initial velocity of 0.5 m/s, the amplitude of the motion is A=0.44m and the maximum velocity is v_{max} =1.16\frac{m}{s}.

Explanation:

1) The simple harmonic motion frequency in a system like a mass attached to a spring is determined by the spring constant k, that indicates the stiffness of the spring, and the mass m:

                                             f=\frac{w}{2\pi} =\frac{1}{2\pi} \sqrt{\frac{k}{m}}

where w=\sqrt{\frac{k}{m}} is the angular frequency

we are told that k=7\frac{N}{m} and m=1kg

                                  f=\frac{1}{2\pi}\sqrt{\frac{7N/m}{1kg}}

                                  f=\frac{1}{2\pi}\sqrt{7\frac{1}{s^{2}}}

                                  f=0.42\frac{1}{s}

the period T is

                                  T=\frac{1}{f}

                                  T=2\pi \sqrt{\frac{m}{k}}

                                  T=2.37s

2) The amplitude is the maximum displacement from equilibrium. If there are no dissipative forces it remains the same throughout the movement. We are told that the mass is displaced 0.4 m from its equilibrium position and released from rest. Then the amplitude of the motion is A=0.4m.

3) Depending on the initial conditions we will choose sine or cosine, both periodic, for the expression of displacement as a function of time x(t). If the mass is displaced a given lenght at t=0 we use cosine. If the mass is at equilibrium position x=0 at t=0 we use sine.

We are told the mass is released from its equilibrium position x=0 at t=0 with an initial velocity of 0.5 m/s. We substitute those values in the expression of velocity that we derive from the expression of displacement as a function of time. We assume the phase to be \phi=0.

                                    x(t)=Asin(wt-\phi)

                                    \frac{dx}{dt}=v(t)=Awcos(wt-\phi)

                                   v(t=0)=Aw=A\sqrt{\frac{k}{m}}

                                   0.5\frac{m}{s} =A\sqrt{7} \frac{1}{s}

                                       A=0.19m

4) We are told the mass is displaced 0.4 m from its equilibrium position and released with an initial velocity of 0.5 m/s. The expressions of velocity and of displacement as a function of time are:

                                      x(t)=Acos(wt-\phi)

                                      v(t)=-Awsin(wt-\phi)

if we substitute t=0

                                       x_{0} =x(t=0)=Acos(\phi)

                                       v_{0}=v(t=0)=-Awsin(\phi)

then we use the trigonometric identities cos(-\phi)=cos(\phi) and sin(-\phi)=-sin(\phi)

                                        x_{0} ^{2}=A^{2}cos(\phi)^{2}

                                        \frac{v_{0} ^{2}}{w^{2}} =A^{2}sin(\phi)^{2}

if we add this two expressions we get

                                        x_{0}^{2}+\frac{v_{0} ^{2}}{w^{2}} =A^{2}(sin(\phi)^{2}+cos(\phi)^{2})            

we use the trigonometric identity (sin(\phi)^{2}+cos(\phi)^{2})=1 to get

                                        A=\sqrt{x_{0}^{2}+\frac{v_{0} ^{2}}{w^{2}}}A=\sqrt{(0.4)^{2}m^{2}+\frac{(0.5)^{2}\frac{m^{2}}{s^{2}}}{(\sqrt{7})^{2}\frac{1}{s^{2}}}}

                                        A=\sqrt{(0.4)^{2}+\frac{(0.5)^{2}}{(\sqrt{7})^{2}})m^{2}}

                                             A=0.44m

maximum velocity occurs when sin(wt-\phi)=-1 in the expression of v(t)

                                         v_{max}=Aw

                                         v_{max}=0.44m .\sqrt{7} \frac{1}{s}

                                         v_{max} =1.16\frac{m}{s}

                                   

                                 

You might be interested in
What effect does the time taken to lift the mass have on power output?
sineoko [7]
The longer the time taken, the lower the power output.

This is since power is calculated through

Energy transferred / time

Increasing the denominator will lead to a lower value overall
4 0
2 years ago
If you do 1500 J of work hoisting a 20 kg bale of hay , to what height did you lift it
strojnjashka [21]

Explanation:

W = PE

W = mgh

1500 J = (20 kg) (9.8 m/s²) h

h = 7.65 m

Round as needed.

4 0
3 years ago
Prove that g is inversely proportional to the radius​
vaieri [72.5K]

Answer:The acceleration due to gravity g is inversely proportional to the square of the radius in the formula g = GM / R^2 where G is the gravitational constant = 6.67 x 10^-11 Nm^2/kg^2, M is the mass of the Earth and R is the radius of the Earth

Explanation:

4 0
3 years ago
The difference between an experimental value and an accepted value is
likoan [24]

Answer:

HERE'S MY UNDERSTANDING OF THE DIFFERENCE

3 0
3 years ago
A transformer is to be used to provide power for a computer disk drive that needs 6.4 V (rms) instead of the 120 V (rms) from th
Amanda [17]

Answer:

The current in the primary is 0.026 A

Explanation:

Using the formula

I1 = (V1/V2)*I2

we have

I1 = (6.4/120)*0.500

I1 = 0.026 A

8 0
3 years ago
Other questions:
  • Another machine uses aninput force of 200 newtons to produce an output force of 80 newtons
    9·1 answer
  • You move a box 5 meters and perform 900 joules of work. How much force did you apply to the box?
    12·1 answer
  • How many electrons will constitute 2A current in unit time
    13·1 answer
  • A toy gun uses a spring with a force constant of 285 N/m to propel a 9.5-g steel ball. Assuming the spring is compressed 7.6 cm
    8·1 answer
  • 4.
    6·1 answer
  • For the two vectors A = (−5, 8) and B = (0, −6), find the components of A + B
    10·1 answer
  • What do atoms of elements in a group have that makes their properties similar? A. the same atomic mass
    9·1 answer
  • A rocket, initially at rest on the ground, accelerates straight upward from rest with constant (net) acceleration 29.4 m/s2 . Th
    14·1 answer
  • What is the kinetie energy of a 3-kilogram ball that is rolling at 2 meters per second?
    9·1 answer
  • A space rocket is launched and accelerates uniformly to 160 m/s in 4.5 s. Calculate the acceleration of the rocket.​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!