Answer:
.
Explanation
In HX , X is more electronegative than Y so HX will ionise more because of ionic bond between H and X . On the other hand H₂Y will be less polar as compared to HX so it will ionise to a lesser extent . Hence Ka will be more for HX . Ka represents the degree of ionisation of acid . Higher the ionisation , higher is the value of Ka . H₂Y which is less polar will ionise less and hence it will have lesser value of Ka .
Hence H₂Y will have value of 10⁻⁷ and HX will have value of ka equal to 10⁹ .
The grams that would be produced from 7.70 g of butanoic acid and excess ethanol is 7.923grams
calculation
Step 1: write the chemical equation for the reaction
CH3CH2CH2COOH + CH3CH2OH → CH3CH2CH2COOCH2CH3 +H2O
step 2: find the moles of butanoic acid
moles= mass/ molar mass
= 7.70 g/ 88 g/mol=0.0875 moles
Step 3: use the mole ratio to determine the moles of ethyl butyrate
moles ratio of CH3CH2CH2COOH :CH3CH2CH2COOCH2CH3 is 1:1 therefore the moles of CH3CH2CH2COOCH2CH3 = 0.0875 x78/100=0.0683moles
step 4: find mass = moles x molar mass
= 0.0683 moles x116 g/mol=7.923grams
Answer:
3,29L
Explanation:
3.29L = V2
Formula: V1/T1 = V2/T2
--------------------
Given:
V1 = 3.0 L V2 = ?
T1 = 310 K T2 = 340 K
--------------------
Plugin:
(X stands in place of V2 just to make it easier to look at)
[3.0L / 310K = X / 340K]
(3.0L / 310K = 0.01L/K)
0.01L/K = X / 340K
(multiply 340K on both sides, it cancels out on the right)
0.01L/K * 340K = X
(0.01L/K * 340K = 3.29L)
**3.29L = X**
[or]
**3.29L = V2**
Answer is: sodium (Na) and iodine (I₂).
<span>
First ionic bonds in this salt are separeted
because of heat:
</span>NaI(l) → Na⁺(l) + I⁻(l).
Reaction of reduction
at cathode(-): Na⁺(l) + e⁻ → Na(l) /×2.
2Na⁺(l) + 2e⁻ → 2Na(l).
Reaction of oxidation
at anode(+): 2I⁻(l) → I₂(l) + 2e⁻.
The anode is positive
and the cathode is negative.
Answer:
The volume increases because the temperature increases and is 2.98L
Explanation:
Charles's law states that the volume of a gas is directely proportional to its temperature. That means if a gas is heated, its volume will increase and vice versa. The equation is:
V₁/T₁ = V₂/T₂
<em>Where V is volume and T is absolute temperature of 1, initial state, and 2, final state of the gas.</em>
In the problem, the gas is heated, from 53.00°C (53.00 + 273.15 = 326.15K) to 139.00°C (139.00 + 273.15 = 412.15K).
Replacing in the Charles's law equation:
2.36L / 326.15K= V₂/412.15K
<h3>2.98L = V₂</h3>
<em />