Answer:
C.) Fleming shows that the Penicillium mood could kill bacteria and observed that it was very effective when taken orally or intravenously
M = mass of the bowling ball = 4 kg
V = speed of bowling ball = 3.93 m/s
P = magnitude of momentum of bowling ball = ?
magnitude of momentum of bowling ball is given as
P = MV
inserting the values
P = 4 x 3.93
P = 15.72 kgm/s
m = mass of ping-pong ball = 2.293 g = 2.293 x 10⁻³ kg
v = speed of the ping-pong ball = ?
p = magnitude of momentum of ping-pong ball
Given that :
magnitude of momentum of ping-pong ball = magnitude of momentum of bowling ball
p = P
m v = 15.72
(2.293 x 10⁻³) v = 15.72
v = 6.86 x 10³ m/s
Answer:
the angle the ladder makes with the floor as seen by an observer on Earth is 71.9°
Explanation:
Given the data in the question and as illustrated in the diagram below.
speed of the ship v = 0.90c
base of the ladder from the wall x₀ = 3.0 m
top of the later above the floor y = 4.0 m
we determine angle θ.
from the diagram,
tanθ = y/x₀
tanθ = y / x₀√( 1 - v²/c² )
we substitute
tanθ = 4.0 / 3.0√( 1 - ((0.9c)²/c²) )
tanθ = 4.0 / 3.0√( 1 - ((0.9²)c²/c²) )
tanθ = 4.0 / 3.0√( 1 - (0.9²) )
tanθ = 4.0 / 3.0√( 1 - 0.81 )
tanθ = 4.0 / 3.0√0.19
tanθ = 4.0 / 1.30766968
tanθ = 3.058876
θ = tan⁻¹( 3.058876 )
θ = 71.8965 ≈ 71.9°
Therefore, the angle the ladder makes with the floor as seen by an observer on Earth is 71.9°
Answer:
a = 0.5 m/s²
Explanation:
Applying the definition of angular acceleration, as the rate of change of the angular acceleration, and as the seats begin from rest, we can get the value of the angular acceleration, as follows:
ωf = ω₀ + α*t
⇒ ωf = α*t ⇒ α =
= 
The angular velocity, and the linear speed, are related by the following expression:
v = ω*r
Applying the definition of linear acceleration (tangential acceleration in this case) and angular acceleration, we can find a similar relationship between the tangential and angular acceleration, as follows:
a = α*r⇒ a = 0.067 rad/sec²*7.5 m = 0.5 m/s²
Answer:
the charge of each particular must be doubled
Explanation:
We can solve this exercise using Coulomb's law
F₀ = k q₁ q₂ / r²
tells us that the force is quadrupled and asks if the load
let's call the initial force F₀, let's find the force of the algae they double
q₁ = q₂ = 2q₀
we substitute
F = k 2q₀o 2q₀ / r₁2
F = 4 F₀
we see that for the force to multiply by 4, the charge of each particular must be doubled