Venus has a dense atmosphere of mostly carbon dioxide. <em>(D)</em>
A, B, and C are false statements.
Answer:
0.231 m/s
Explanation:
m = mass attached to the spring = 0.405 kg
k = spring constant of spring = 26.3 N/m
x₀ = initial position = 3.31 cm = 0.0331 m
x = final position = (0.5) x₀ = (0.5) (0.0331) = 0.01655 m
v₀ = initial speed = 0 m/s
v = final speed = ?
Using conservation of energy
Initial kinetic energy + initial spring energy = Final kinetic energy + final spring energy
(0.5) m v₀² + (0.5) k x₀² = (0.5) m v² + (0.5) k x²
m v₀² + k x₀² = m v² + k x²
(0.405) (0)² + (26.3) (0.0331)² = (0.405) v² + (26.3) (0.01655)²
v = 0.231 m/s
Answer:
vB = 15.4 m/s
Explanation:
Principle of conservation of energy:
Because there is no friction the mechanical energy is conserve
ΔE = 0
ΔE : mechanical energy change (J)
K : Kinetic energy (J)
U: Potential energy (J)
K = (1/2)mv²
U = m*g*h
Where :
m: mass (kg)
v : speed (m/s)
h : hight (m)
Ef - Ei = 0
(K+U)final - (K+U)initial =0
(K+U)final = (K+U)initial
((1/2)mv²+m*g*h)final = ((1/2)mv²+m*g*h)initial , We divided by m both sides of the equation:
((1/2)vB² + g*hB = (1/2 )vA²+ g*hA
(1/2) (vB)² + (9.8)*(14.7) = 0 + (9.8)(26.8 )
(1/2) (vB)² = (9.8)(26.8 ) - (9.8)*(14.7)
(vB)² = (2)(9.8)(26.8 - 14.7)
(vB)² = 237.16

vB = 15.4 m/s : speed of the cart at B