I'm pretty sure it is true. (78% sure)
After the great 1906 San Francisco earthquake, geolophysicistHarry Fielding Reid examined the displacement of the ground surface along the San Andreas Fault. He concluded that the quake must have been the result of the elastic reboundof the strain energy in the rocks on either side of the fault.
strain energy is 0. 5x force x (compression) X (compression)
There is a lot of force and a bit of compression when rocks squash up against other rocks causing earthquakes
Q=mc(t2-t1)
Q=2.06kg x specific heat of oil(191-23)
Q=2.06×c×168
Q=143.62q
The steel would expand by 4. 8 * 10^-3 cm
<h3>How to determine the linear expansion</h3>
The change in length ΔL is proportional to length L. It is dependent on the temperature, substance, and length.
Using the formula:
ΔL= α LΔT
where ΔL is the change in length L = 10cm
ΔT is the change in temperature = 60° - 20° = 40° C
α is the coefficient of linear expansion = 1.2 x 10^-5 °C
Substitute into the formula
ΔL = 
ΔL =
cm
Therefore, the steel would expand by 4. 8 * 10^-3 cm
Learn more about linear expansion here:
brainly.com/question/14325928
#SPJ1
Yes
Explanation:
From the graph, we can deduce that the wavelength changes with the speed of the wave.
This is a simple linear graph. A linear graph has a steady gradient and it shows two variables that increases proportionately.
Using the graph, we can establish that as the wavelength of the wave increases the time taken for one wave to pass through increases.
The speed of a wave is given as:
V = fλ
f is the frequency of the wave i.e the number of waves that passes through a point per unit of time
λ is the wavelength of the wave
The vertical axis on the graph shows the time for 1 wave trip, this is the wave period, T
f = 
Therefore;
speed of the wave = 
This can be evaluated by solving slope of the graph and finding the inverse.
We can see that as the speed of the wave changes, the wavelength will change.
learn more:
Wavelength brainly.com/question/6352445
#learnwithBrainly