<span>The atoms or molecules attain enough kinetic energy to overcome any intermolecular attractions they have. Since there are no longer any attractive forces between the particles, they are free to drift away into space. The same sort of thing happens in ordinary evaporation, but only at the surface. </span>
NaOH is a strong base and complete dissociation into Na⁺ and OH⁻ ions.
Therefore [NaOH] = [OH⁻]
To calculate the [OH⁻], we can first find the pOH as NaOH is a basic solution.
pH + pOH = 14
Since pH = 11.50
pOH = 14 - 11.50
pOH = 2.50
We can calculate [OH⁻] by knowing pOH
pOH = -log[OH⁻]
[OH⁻] = antilog(-pOH)
[OH⁻] = 3.2 x 10⁻³ M
therefore [NaOH] = 3.2 x 10⁻³ M
Answer:
The volume increases because the temperature increases and is 2.98L
Explanation:
Charles's law states that the volume of a gas is directely proportional to its temperature. That means if a gas is heated, its volume will increase and vice versa. The equation is:
V₁/T₁ = V₂/T₂
<em>Where V is volume and T is absolute temperature of 1, initial state, and 2, final state of the gas.</em>
In the problem, the gas is heated, from 53.00°C (53.00 + 273.15 = 326.15K) to 139.00°C (139.00 + 273.15 = 412.15K).
Replacing in the Charles's law equation:
2.36L / 326.15K= V₂/412.15K
<h3>2.98L = V₂</h3>
<em />
Chloride ions Cl –(aq) (from the dissolved sodium chloride) are discharged at the positive electrode as chlorine gas, Cl 2(g) sodium ions Na +(aq) (from the dissolved sodium chloride) and hydroxide ions OH –(aq) (from the water) stay behind - they form sodium hydroxide solution, NaOH(aq)