Answer:
Wave X has a shorter wavelength.
Explanation:
The relation between the speed of a wave, its wavelength and frequency is given by :

It can be seen that the relationship between the frequency and wavelength is inverse.
In this problem, it is mentioned that two sound waves (wave X and wave Y) are moving through a medium at the same speed. The frequency of wave X is greater than wave Y. Then it would mean that wave X have shorter wavelength than wave Y (due to inverse relation).
Answer:
572.3 nm
Explanation:
= refractive index of the oil film = 1.48
= thickness of the oil film = 290 nm
= wavelength of the dominant color
m = order
Using the equation

For m = 0

= 1716.8 nm
For m = 1

= 572.3 nm
For m = 2

= 343.4 nm
Hence the dominant color wavelength is 572.3 nm
You will be left with 106 kids
<h3>Meaning of word problem</h3>
A word problem can be defined as a mathematical problem that is written in word or written in a sentence format.
In a word problem, the student is expected to decode the sentence into a mathematical expression before solving
In conclusion, You will be left with 106 kids
Learn more about word problems: brainly.com/question/13818690
#SPJ1
"Balanced" means that if there's something pulling one way, then there's also
something else pulling the other way.
-- If there's a kid sitting on one end of a see-saw, and another one with the
same weight sitting on the other end, then the see-saw is balanced, and
neither end goes up or down. It's just as if there's nobody sitting on it.
-- If there's a tug-of-war going on, and there are 300 freshmen pulling on one
end of a rope, and another 300 freshmen pulling in the opposite direction on
the other end of the rope, then the hanky hanging from the middle of the rope
doesn't move. The pulls on the rope are balanced, and it's just as if nobody
is pulling on it at all.
-- If a lady in the supermarket is pushing her shopping cart up the aisle, and her
two little kids are in front of the cart pushing it in the other direction, backwards,
toward her. If the kids are strong enough, then the forces on the cart can be
balanced. Then the cart doesn't move at all, and it's just as if nobody is pushing
on it at all.
From these examples, you can see a few things:
-- There's no such thing as "a balanced force" or "an unbalanced force".
It's a <em><u>group</u> of forces</em> that is either balanced or unbalanced.
-- The group of forces is balanced if their strengths and directions are
just right so that each force is canceled out by one or more of the others.
-- When the group of forces on an object is balanced, then the effect on the
object is just as if there were no force on it at all.
So we want to know how can we detect infrared rays without an instrument. Infrared rays or heat, are a part of electromagnetic spectrum. We have specialized nerve cells in our skin called thermoreceptors that can detect differences in temperature that are produced by infrared part of EM spectrum.