Explanation:
It is given that,
Mass of lithium, 
It is accelerated through a potential difference, V = 224 V
Uniform magnetic field, B = 0.724 T
Applying the conservation of energy as :


q is the charge on an electron

v = 78608.58 m/s

To find the radius of the ion's path in the magnetic field. The centripetal force is balanced by the magnetic force as :



r = 0.0078 meters
So, the radius of the path of the ion is 0.0078 meters. Hence, this is the required solution.
Answer:
The answer is given below
Explanation:
Things provided in the statement:
Pressure <em>P1</em> = 120 kPa and <em>P2</em> = 5.6 MP or 5600 kPa
Power, <em>W</em> = 7 kW
Elevation difference = ∆z = 10 m
Mass of flow = m˙
So potential energy changes may be significant
Specific volume of water V= 0.001 m³/kg
Now putting the values in the formula
Power, <em>W </em>= m˙ x V (<em>P1 - P2</em>) + m˙ x g x ∆z
7 = m˙ x 0.001 (5600 - 120 ) + m˙ x 9.8 x 10 x (1 kJ/kg/ 1000 m^2/s^2)
7 = m˙ x 5.48 + m˙ x 0.098
7 = m ˙x 5.38
m˙ = 7/5.38
So mass flow m˙ = 1.301 kJ/s
Answer:
The graph shows direct proportion because it is a straight line
through the origin.
Explanation:
Answer:
2.271386111 km/s
Explanation:
1321÷60hrs÷60mins×6.19s=2.27km
<span>It gains an electron.</span>