Explanation:
1. Mass of the proton, 
Wavelength, 
We need to find the potential difference. The relationship between potential difference and wavelength is given by :



V = 45.83 volts
2. Mass of the electron, 
Wavelength, 
We need to find the potential difference. The relationship between potential difference and wavelength is given by :




V = 84109.27 volt
Hence, this is the required solution.
<h3><u>Answer;</u></h3>
<em>Electrons </em>
<h3><u>Explanation;</u></h3>
- <em><u>Thomson contributed to the model of an atom by discovery of </u></em><em><u>electrons </u></em><em><u>and thus proving the existence of sub-atomic particles in an atom. </u></em>
- <u><em>Thomson used cathode ray tube, and demonstrated that cathode rays were negatively charged.</em></u> According to his model normally known as the plum pudding in which he stated that an atom is composed of electrons as subatomic particles that are surrounded by positive charges to balance the electrons.
Answer:
The strength of the magnetic field that the line produces is
.
Explanation:
From Biot-Savart law, the equation to determine the strength of the magnetic field for any straight wire can be deduced:
(1)
Where
is the permiability constant, I is the current and r is the distance from the wire.
Notice that it is necessary to express the current, I, from kiloampere to ampere.
⇒ 
Finally, equation 1 can be used:
Hence, the strength of the magnetic field that the line produces is
.
I know that protons and neutrons are located at the center of an atom, so the correct answer is D
Explanation:
Given that,
Wavelength of the light, 
Work function of sodium, 
The kinetic energy of the ejected electron in terms of work function is given by :

The formula of kinetic energy is given by :

Hence, this is the required solution.