Answer:
If carbonyl oxygen of 4-hydroxypentanal is enriched with
, then the oxygen label appears in the water .
Explanation:
- In the first step, -OH group at C-4 gives intramolecular nucleophilic addition reaction at carbonyl center to produce a cyclic hemiacetal.
- Then, one equivalent of methanol gives nucleophilic substitiution reaction by substituting -OH group in cyclic hemiacetal to produce cyclic acetal.
- If carbonyl oxygen of 4-hydroxypentanal is enriched with
, then the oxygen label appears in the water produced at the end of reaction. - Full reaction mechanism has been shown below.
A good first step is writing the amount in terms of ml.
19.2 gallons = 72.68 L = 72680 ml
that would mean it weighs 0.749*720680g = 54437.32ml = 54.437 L
hope that helps :)
Answer:
A
Explanation:
B describes a strong base, C just isn't true there are only 7 strong acids, D describes a weak acid
A solution is a homogeneous type of mixture of two or more substances. A solution has two parts: a solute and a solvent.
Answer : The correct option is, +91 kJ/mole
Solution :
The balanced cell reaction will be,

Here copper (Cu) undergoes oxidation by loss of electrons, thus act as anode. Lead (Pb) undergoes reduction by gain of electrons and thus act as cathode.
First we have to calculate the standard electrode potential of the cell.
![E^0_{[Pb^{2+}/Pb]}=-0.13V](https://tex.z-dn.net/?f=E%5E0_%7B%5BPb%5E%7B2%2B%7D%2FPb%5D%7D%3D-0.13V)
![E^0_{[Cu^{2+}/Cu]}=+0.34V](https://tex.z-dn.net/?f=E%5E0_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D%3D%2B0.34V)

![E^0_{cell}=E^0_{[Pb^{2+}/Pb]}-E^0_{[Cu^{2+}/Cu]}](https://tex.z-dn.net/?f=E%5E0_%7Bcell%7D%3DE%5E0_%7B%5BPb%5E%7B2%2B%7D%2FPb%5D%7D-E%5E0_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D)

Now we have to calculate the standard Gibbs free energy.
Formula used :

where,
= standard Gibbs free energy = ?
n = number of electrons = 2
F = Faraday constant = 96500 C/mole
= standard e.m.f of cell = -0.47 V
Now put all the given values in this formula, we get the Gibbs free energy.

Therefore, the standard Gibbs free energy is +91 kJ/mole