çvñlkãßí ang ganda ko tapos ang cute ko
Last summer i went to barrier island.
hope this help
When an object's atoms move faster, its thermal energy increases and the object becomes warmer.
When hard stabilization structures such as groins are used to stabilize a shoreline, the change in the longshore current results <u>deposition of sediment. </u>
On the upcurrent side of the barrier, sediment is deposited as the longshore current slows.
What is Hard stabilization?
- Hard stabilization is the prevention of erosion through the use of artificial barriers.
- Other hard stabilization structures, such as breakwaters and seawalls, are built parallel to the beach to protect the coast from the force of waves.
- Hard stabilization structures, such as groins, are built at right angles to the shore to prevent the movement of sand down the coast and maintain the beach.
- These constructions are made to last for many years, but because they detract from the visual splendor of the beach, they are not always the ideal answer.
- Additionally, they affect the habitats and breeding sites of native shoreline species, interfering with the ecosystem's natural processes.
Learn more about the Hard stabilization with the help of the given link:
brainly.com/question/16022736
#SPJ4
Answer:
1.0 M HNO3 at 40<em>°C</em>
Explanation:
Rate of chemical reaction: This can be defined as the number of moles of reactant, converted or product formed per unit time.
Factors that affect rate of chemical reaction:
(a) Temperature: Generally, an increase in temperature increase the rate of chemical reaction by (1) increasing the number of particles with energy equal to or greater than the activation energy, (2) Increasing the average speed of all the reactant particles, due to greater kinetic energy, leading to higher frequency of collision.
(b) Concentration: An increase or decrease in the concentration of the reactant will result to a corresponding increase or decrease in the effective collision of the reactant and hence in the reaction rate.
other factors that affect the rate of chemical reaction are
(i) Nature of the reactant
(ii) Surface area of reactant
(iii) presence of light
(iv) presence of catalyst.
From the question above,
<em>The condition with the highest temperature and concentration will produce the GREATEST reaction rate.</em>
<em>And that is 1.0 M HNO3 at 40 °C</em>