Answer:
2PBr₃ + 3Cl₂ → 2PCl₃ + 3Br₂
2Na + MgCl₂ → 2NaCl + Mg
Explanation:
A balanced chemical equation is a chemical equation that have an equal number of elements of each type on both sides of the equation
Among the given chemical reactions, we have;
2PBr₃ + 3Cl₂ → 2PCl₃ + 3Br₂
In the above reaction;
The number of phosphorus, P, on either side of the equation = 2
The number of bromine atoms, Br, on either side of the equation = 6
The number of chlorine atoms, Cl, on either side of the equation = 6
Therefore, the number of elements in the reactant side and products side of the reaction are equal and the reaction is balanced
The second balanced chemical reaction is 2Na + MgCl₂ → 2NaCl + Mg
In the above reaction, there are two sodium atoms, Na, one magnesium atom and two chlorine atoms on both sides of the reaction, therefore, the reaction is balanced
Answer:
Polaroid fliter
Explanation:
light can be polarized by using Polaroid filters
Polaroid fliter are made of special material that is capable of blocking one of the two planes of vibration of an electromagnetic wave
hope this is useful--(have a good day)
<span>So we want to know is it true or false that geothermal energy is derived from the Sun. Geothermal energy is heat energy that is stored in the Earth. Solar energy is energy that we get by collecting sunlight via solar collectors and turning it into electrical energy. So the answer is FALSE. </span>
Answer:
The correct option is energy levels
Explanation:
Rutherford's model of an atom suggests that an atom has a tiny positively charged central mass (now called the nucleus) which is surrounded by electrons (negatively charged) in a <em>cloud</em>-like manner.
Bohr's model went a bit further than the Rutherford's model in describing an atom by suggesting that the electrons which surrounds in the nucleus travel in <u>fixed circular orbits</u>. This description by <em>Bohr was able to describe the energy levels of orbitals which assumes that smallest orbitals have the lowest energy while the largest orbitals have the highest energy</em>.