Answer:
The translational kinetic energy is 225 J
The rotational kinetic energy is 225 J
Explanation:
Given;
mass of the wheel, m = 2-kg
linear speed of the wheel, v = 15 m/s
Transnational kinetic energy is calculated as;
E = ¹/₂MV²
where;
M is mass of the moving object
V is the velocity of the object
E = ¹/₂ x 2 x (15)²
E = 225 J
Rotational kinetic energy is calculated as;
E = ¹/₂Iω²
where;
I is moment of inertia
ω is angular velocity

E = ¹/₂ x 2 x (15)²
E = 225 J
Thus, the translational kinetic energy is equal to rotational kinetic energy
Answer:

Explanation:
We can use the equation for the speed

where x is the distance and t the time. In this case we know that the time spent was 2 hours and the distance was 150km. By replacing we have

I hope this useful for you
regards
Answer:
ΔΦ = -3.39*10^-6
Explanation:
Given:-
- The given magnetic field strength B = 0.50 gauss
- The angle between earth magnetic field and garage floor ∅ = 20 °
- The loop is rotated by 90 degree.
- The radius of the coil r = 19 cm
Find:
calculate the change in the magnetic flux δφb, in wb, through one of the loops of the coil during the rotation.
Solution:
- The change on flux ΔΦ occurs due to change in angle θ of earth's magnetic field B and the normal to circular coil.
- The strength of magnetic field B and the are of the loop A remains constant. So we have:
Φ = B*A*cos(θ)
ΔΦ = B*A*( cos(θ_1) - cos(θ_2) )
- The initial angle θ_1 between the normal to the coil and B was:
θ_1 = 90° - ∅
θ_1 = 90° - 20° = 70°
The angle θ_2 after rotation between the normal to the coil and B was:
θ_2 = ∅
θ_2 = 20°
- Hence, the change in flux can be calculated:
ΔΦ = 0.5*10^-4*π*0.19*( cos(70) - cos(20) )
ΔΦ = -3.39*10^-6
Answer:
v = I xR =6.16 × 17.6 = 108.416 v
Explanation:
p.d = v