Answer:
The principle of a potentiometer is that the potential dropped across a segment of a wire of uniform cross-section carrying a constant current is directly proportional to its length. The potentiometer is a simple device used to measure the electrical potentials (or compare the e.m.f of a cell).
Explanation:
I hope it will help you
Answer:
1200N/m
Explanation:
given parameters:
force on the motorcycle spring is 240N
Extension 2cm or 0.02m
unknown _
spring constant:
:?
solution:
to a spring a force applied is given as :
f=ke
f is applied as force
k is spring constant
e is the Extension
240= kx0.02
k=1200N/m
<span>Melting of ice is an endothermic process, meaning that energy is absorbed. When ice spontaneously melts, ΔH (change in enthalpy) is "positive". ΔS (entropy change) is also positive, because, becoming a liquid, water molecules lose their fixed position in the ice crystal, and become more disorganized. ΔG (free energy of reaction) is negative when a reaction proceeds spontaneously, as it happens in this case. Ice spontaneously melts at temperatures higher than 0°C. However, liquid water also spontaneously freezes at temperatures below 0°C. Therefore the temperature is instrumental in determining which "melting" of ice, or "freezing" of water becomes spontaneous. The whole process is summarized in the Gibbs free energy equation:
ΔG = ΔH – TΔS</span>
Answer:
Momentum is always conserved, and kinetic energy may be conserved.
Explanation:
For an object moving on a horizontal, frictionless surface which makes a glancing collision with another object initially at rest on the surface, the type of collision experienced by this objects can either be elastic or an inelastic collision depending on whether the object sticks together after collision or separates and move with a common velocity after collision.
If the body separates and move with a common velocity after collision, the collision is elastic but if they sticks together after collision, the collision is inelastic.
Either ways the momentum of the bodies are always conserved since they will always move with a common velocity after collision but their kinetic energy may or may not be conserved after collision, it all depends whether they separates or stick together after collision and since we are not told in question whether or not they separate, we can conclude that their kinetic energy "may" be conserved.