Answer:
, downward
Explanation:
There is only one force acting on the ball during its motion: the force of gravity, which is given by

where
m is the mass of the ball
is the acceleration of gravity (downward)
According to Newton's second law,

where F is the net force on the object and a is its acceleration. Rearranging for a,

As we said, the only force acting on the ball is gravity, so F = mg and the acceleration of the ball is:

Therefore, the ball has a constant acceleration of
downward for the entire motion.
Answer:
Equal to 5000N
Explanation:
The stress on the material is defined by force per unit of cross-sectional area. So it depends on the force and the diameter of the wire, which is the same for both wires. The material that defines the breaking point, is also the same. Therefore, both wires have their breaking point the same at 5000N. The wire length plays no role in here.
Height and depth..... for sure....
Answer:
measure the position every so often with a stopwatch
Explanation:
A possible method of measurement is to place a measuring tape along the path and measure the position every so often with a stopwatch, with this we can make a graph of position against time and by extrapolation find the initial velocity.
This is a method used in measurements of uniform movements of bodies
The answer is a 20 or 140 u choose because u subtract or add these numbers and sorry I can’t speak sri lanka or Indian but I know how to read them