First thing to do is to draw the system described above. Then, write an equation for the forces present.
<span>
</span>Σ<span>F = Fg - Ff
</span><span>0 = mgsin</span><span>∅</span><span> - umgcos</span><span>∅</span><span>0 = gsin</span><span>∅</span><span> - ugcos</span><span>∅</span><span>
u = tan</span><span>∅
</span>∅(max) = tan^-1 (u)<span>
</span>
Answer:
4 %
2 ) 3.42 %
Explanation:
Sensitivity requirement of 4 milligram means it is not sensitive below 4 milligram or can not measure below 4 milligram .
Given , 4 milligram is the maximum error possible .
Measured weight = 100 milligram
So percentage maximum potential error
= (4 / 100) x 100
4 %
2 )
As per measurement
weight of 6 milliliters of water
= 48.540 - 42.745 = 5.795 gram
6 milliliters of water should measure 6 grams
Deviation = 6 - 5.795 = - 0.205 gram.
Percentage of error =(.205 / 6 )x 100
= 3.42 %
Answer:
acceleration, a = 9.8 m/s²
Explanation:
'A ball is dropped from the top of a building' indicates that the initial velocity of the ball is zero.
u = 0 m/s
After 2 seconds, velocity of the ball is 19.6 m/s.
t = 2s, v = 19.6 m/s
Using
v = u + at
19.6 = 0 + 2a
a = 9.8 m/s²
Because a nuclear meltdown can be caused if systems fail.
In physics, power is defined as energy per unit time. You will also hear it described as work per unit time. The standard unit of measure for power is the watt, where a watt is defined as joules (energy) per second (time). This is expressed as a fraction as J/s. If you wanted to increase the power in any operation, you can either increase the energy (more joules) or reduce the time (fewer seconds).