Answer:
The appropriate response is "
". A further explanation is described below.
Explanation:
The torque (
) produced by the force on the dam will be:
⇒ 
On applying integration both sides, we get
⇒ 
⇒ 
⇒ ![=pgL[\frac{h^3}{2} -\frac{h^3}{3} ]](https://tex.z-dn.net/?f=%3DpgL%5B%5Cfrac%7Bh%5E3%7D%7B2%7D%20-%5Cfrac%7Bh%5E3%7D%7B3%7D%20%5D)
⇒ 
Answer:
21.35 cm^3
Explanation:
let the volume at the surface of fresh water is V.
The volume at a depth of 100 m is V' = 2 cm^3
temperature remains constant.
density of water, d = 1000 kg/m^3
Pressure at the surface of fresh water is atmospheric pressure,
P = Po = 1.013 x 10^5 N/m^2
The pressure at depth 100 m is P' = Po + hdg
P' = 
P' = 10.813 x 10^5 N/m^2
Use the Boyle's law
P V = P' V'

V = 21.35 cm^3
Thus, the volume of air bubble at the surface of fresh water is 21.35 cm^3.
According to the Law of Conservation of Energy, energy is neither created nor destroyed. It is only transferred through different forms of energy. For the following situations, the conversion of energy is as follows:
*Turning on a space heater = electrical energy⇒heat energy
*Dropping an apple core into the garbage = potential energy⇒kinetic energy
*Climbing up a rope ladder = kinetic energy⇒potential energy
*Starting a car = chemical energy⇒mechanical energy
<span>*Turning on a flashlight = chemical energy</span>⇒electrical energy
The volume decreases, by a factor of
(the original pressure/(125 kPa).
B. gas has no definite shape or volume. liquid has definite volume but no definite shape