Answer:
v = 21.03 m/s
Explanation:
given,
mass of skier = 45 kg
the slope of the snow = 10.0◦
coefficient of friction = 0.114
distance traveled = 300 m
speed = ?
Acceleration = g sin θ - µ g Cos θ
= 9.8 × Sin (10°) - 0.10 × 9.8 × Cos(10°)
= 0.737 m/s²
using equation of motion
v² = u² + 2 a s
v² = 0 + 2 × 0.737 × 300
v = 21.03 m/s
Speed of skier's after travelling 300 m speed is equal to 21.03 m/s
Answer:
they use thermals and air currents to glide.
Explanation:
when they flap higher they use thermals and air currents because flapping takes a lot of fuel,energy
Answer:
0.37 m
Explanation:
The angular frequency, ω, of a loaded spring is related to the period, T, by

The maximum velocity of the oscillation occurs at the equilibrium point and is given by

A is the amplitude or maximum displacement from the equilibrium.

From the the question, T = 0.58 and A = 25 cm = 0.25 m. Taking π as 3.142,

To determine the height we reached, we consider the beginning of the vertical motion as the equilibrium point with velocity, v. Since it is against gravity, acceleration of gravity is negative. At maximum height, the final velocity is 0 m/s. We use the equation

is the final velocity,
is the initial velocity (same as v above), a is acceleration of gravity and h is the height.


B. False
Endothermic reactions absorb heat.