-23 is the final answer beacuse bigger negavtives
Go get a science teacher but i think it is because ................
Because their atoms have the same number of electrons in the highest occupied energy level
Answer:
FADH2 has a lower (less negative) redox potential than NADH does
Explanation:
Flavin Adenine Dinucleotide (FAD) and Nicotinamide Adenine Dinucleotide (NAD) are redox cofactors that play important functions for mitochondrial activity and cellular redox balance. Both coenzymes exist in two forms: an oxidized and a reduced, which are abbreviated as NAD/FAD and NADH/FADH2, respectively. These reduced forms (NADH and FADH2) are produced in the Krebs cycle during respiration. FADH2 has lower redox potential than NADH because FADH2 is only capable of activating 2 proton pumps, while NADH can activate 3 proton pumps during the electron transport chain, thereby FADH2 generates a minor number of ATP molecules than NADH.
Hello!
First, we can assume the density of water to be
1 g/mL, so the volume of water would be
725 mL. The density of Acetic Acid (Pure) is
1,05 g/mL so 8 grams would represent
7,61 mLNow we can apply the following conversion factor to calculate the molarity of the solution, using the molar mass of Acetic Acid:
![[CH_3CO_2H]=\frac{8 g_{CH_3CO_2H} }{725 mL + 7,61 mL}* \frac{1000 mL}{1 L}* \frac{1 mol_{CH_3CO_2H} }{60,05 g_{CH_3CO_2H} }](https://tex.z-dn.net/?f=%5BCH_3CO_2H%5D%3D%5Cfrac%7B8%20g_%7BCH_3CO_2H%7D%20%20%7D%7B725%20mL%20%2B%207%2C61%20mL%7D%2A%20%5Cfrac%7B1000%20mL%7D%7B1%20L%7D%2A%20%5Cfrac%7B1%20mol_%7BCH_3CO_2H%7D%20%7D%7B60%2C05%20g_%7BCH_3CO_2H%7D%20%7D)
![[CH_3CO_2H]=0,1818 M](https://tex.z-dn.net/?f=%5BCH_3CO_2H%5D%3D0%2C1818%20M)
So, the concentration of acetic acid would be
0,1818 MHave a nice day!