Explanation:
The given data is as follows.
Pressure (P) = 760 torr = 1 atm
Volume (V) =
= 0.720 L
Temperature (T) =
= (25 + 273) K = 298 K
Using ideal gas equation, we will calculate the number of moles as follows.
PV = nRT
Total atoms present (n) =
=
= 0.0294 mol
Let us assume that there are x mol of Ar and y mol of Xe.
Hence, total number of moles will be as follows.
x + y = 0.0294
Also, 40x + 131y = 2.966
x = 0.0097 mol
y = (0.0294 - 0.0097)
= 0.0197 mol
Therefore, mole fraction will be calculated as follows.
Mol fraction of Xe =
= 
= 0.67
Therefore, the mole fraction of Xe is 0.67.
A weak bond between two molecules resulting from an electrostatic attraction between a proton in one molecule and an electronegative atom in another
Answer:
Filament
Explanation:
The style, ovary and the stigma is present in the pistil thus the gilament is not a part of the pistil
The number of atoms of K that are in 235 g of the compound is
2.57 x10^24 atoms
calculation
Step 1: find the moles of K2S
= moles = mass/molar mass
= 235 g/110 g/mol= 2.136 moles
Step 2: multiply 2.136 moles by no. of K atoms in K2S
= 2.136 x2 = 4.272 moles
Step 3: use the Avogadro's law to determine number of K atoms
that is according to Avogadro's law 1 mole = 6.02 x 10^23 atoms
4.272 moles= ? atoms
by cross multiplication
= (4.272 moles x 6.02 x10^23 atoms) / 1 mole = 2.57 x10^24 atoms
<span> Ag(NH3)2Cl + 3HNO3 = AgNO3 +2NH4NO3 + HCl </span>
<span>or
Ag(NH3)2Cl + HNO3 = Ag(NH3)2NO3 + HCl this the complete balanced equation
now remove spectator ions to get net ionic equation
so
</span>
<span>
2H+ + 2NO3- + [Ag(NH3)2]+ Cl- -> AgCl + 2NH4+ + 2NO3- 2NO3- 2H+ [Ag(NH3)2]+ + Cl- -> AgCl + 2NH4+
</span>hope it helps