1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alla [95]
2 years ago
6

Chemical Reactions

Chemistry
1 answer:
irakobra [83]2 years ago
6 0

Answer:

It works by separating the fuel from the oxygen. The oxygen comes from the air. It is the same oxygen we breathe. Since the oxygen has to be in contact with the fuel, if you can coat the fuel with something that keeps the oxygen away, the fire will go out which is what the fire extinguisher does.

You might be interested in
A small amount of acid is added to a buffer solution, the ph of the solution will
Alik [6]
Increase due to rising ph
7 0
3 years ago
Read 2 more answers
The International Date Line
geniusboy [140]

Answer:

The International Date Line, established in 1884, passes through the mid-Pacific Ocean and roughly follows a 180 degrees longitude north-south line on the Earth. It is located halfway round the world from the prime meridian—the zero degrees longitude established in Greenwich, England, in 1852.

8 0
3 years ago
What is the basic difference between exergonic and endergonic reactions? Group of answer choices Exergonic reactions release ene
alekssr [168]

Answer: the basic difference is Exergonic reactions release energy and an endergonic reactions absorb energy .

HOPE THIS HELPS!!!

3 0
3 years ago
What toupee of matter is oxygen
Aleksandr [31]

All matter is made from atoms with the configuration of the atom, the number of protons, neutrons, and electrons, determining the kind of matter present (oxygen, lead, silver, neon ...). Every substance has a unique number of protons, neutrons, and electrons. Oxygen, for example, has 8 protons, 8 neutrons, and 8 electrons. Individual atoms can combine with other atoms to form molecules. Water molecules contain two atoms of hydrogen H and one atom of oxygen O and is chemically called H2O. Oxygen and nitrogen, which are the major components of air, occur in nature as diatomic (two atom) molecules. Regardless of the type of molecule, matter normally exists as either a solid, a liquid, or a gas. We call this property of matter the phase of the matter. The three normal phases of matter have unique characteristics which are listed on the slide.

Solid

In the solid phase the molecules are closely bound to one another by molecular forces. A solid holds its shape and the volume of a solid is fixed by the shape of the solid.

Liquid

In the liquid phase the molecular forces are weaker than in a solid. A liquid will take the shape of its container with a free surface in a gravitational field. In microgravity, a liquid forms a ball inside a free surface. Regardless of gravity, a liquid has a fixed volume.

Gas

In the gas phase the molecular forces are very weak. A gas fills its container, taking both the shape and the volume of the container.

Fluids (Liquids and Gases)

Liquids and gases are called fluids because they can be made to flow, or move. In any fluid, the molecules themselves are in constant, random motion, colliding with each other and with the walls of any container. The motion of fluids and the reaction to external forces are described by the Navier-Stokes Equations, which express a conservation of mass, momentum, and energy. The motion of solids and the reaction to external forces are described by Newton's Laws of Motion.

Any substance can occur in any phase. Under standard atmospheric conditions, water exists as a liquid. But if we lower the temperature below 0 degrees Celsius, or 32 degrees Fahrenheit, water changes its phase into a solid called ice. Similarly, if we heat a volume of water above 100 degrees Celsius, or 212 degrees Fahrenheit, water changes its phase into a gas called water vapor. Changes in the phase of matter are physical changes, not chemical changes. A molecule of water vapor has the same chemical composition, H2O, as a molecule of liquid water or a molecule of ice.

When studying gases , we can investigate the motions and interactions of individual molecules, or we can investigate the large scale action of the gas as a whole. Scientists refer to the large scale motion of the gas as the macro scale and the individual molecular motions as the micro scale. Some phenomenon are easier to understand and explain based on the macro scale, while other phenomenon are more easily explained on the micro scale. Macro scale investigations are based on things that we can easily observe and measure. But micro scale investigations are based on rather simple theories because we cannot actually observe an individual gas molecule in motion. Macro scale and micro scale investigations are just two views of the same thing.

Plasma - the "fourth phase"

The three normal phases of matter listed on the slide have been known for many years and studied in physics and chemistry classes. In recent times, we have begun to study matter at the very high temperatures and pressures which typically occur on the Sun, or during re-entry from space. Under these conditions, the atoms themselves begin to break down; electrons are stripped from their orbit around the nucleus leaving a positively charged ion behind. The resulting mixture of neutral atoms, free electrons, and charged ions is called a plasma. A plasma has some unique qualities that causes scientists to label it a "fourth phase" of matter. A plasma is a fluid, like a liquid or gas, but because of the charged particles present in a plasma, it responds to and generates electro-magnetic forces. There are fluid dynamic equations, called the Boltzman equations, which include the electro-magnetic forces with the normal fluid forces of the Navier-Stokes equations. NASA is currently doing research into the use of plasmas for an ion propulsion system.

3 0
3 years ago
Combine the two half-reactions that give the spontaneous cell reaction with the smallest E∘. Fe2+(aq)+2e−→Fe(s) E∘=−0.45V I2(s)+
Iteru [2.4K]

<u>Answer:</u> The spontaneous cell reaction having smallest E^o is I_2+Cu\rightarrow Cu^{2+}+2I^-

<u>Explanation:</u>

We are given:

E^o_{(Fe^{2+}/Fe)}=-0.45V\\E^o_{(I_2/I^-)}=0.54V\\E^o_{(Cu^{2+}/Cu)}=0.34V

The substance having highest positive E^o potential will always get reduced and will undergo reduction reaction. Here, iodine will always undergo reduction reaction, then copper and then iron.

The equation used to calculate electrode potential of the cell is:

E^o_{cell}=E^o_{oxidation}+E^o_{reduction}

The combination of the cell reactions follows:

  • <u>Case 1:</u>

Here, iodine is getting reduced and iron is getting oxidized.

The cell equation follows:

I_2(s)+Fe(s)\rightarrow Fe^{2+}(aq.)+2I^-(aq.)

Oxidation half reaction:  Fe(s)\rightarrow Fe^{2+}(aq.)+2e^-   E^o_{oxidation}=0.45V

Reduction half reaction:  I_2(s)+2e^-\rightarrow 2I_-(aq.)   E^o_{reduction}=0.54V

E^o_{cell}=0.45+0.54=0.99V

Thus, this cell will not give the spontaneous cell reaction with smallest E^o_{cell}

  • <u>Case 2:</u>

Here, iodine is getting reduced and copper is getting oxidized.

The cell equation follows:

I_2(s)+Cu(s)\rightarrow Cu^{2+}(aq.)+2I^-(aq.)

Oxidation half reaction:  Cu(s)\rightarrow Cu^{2+}(aq.)+2e^-   E^o_{oxidation}=-0.34V

Reduction half reaction: I_2(s)+2e^-\rightarrow 2I_-(aq.)   E^o_{reduction}=0.54V

E^o_{cell}=-0.34+0.54=0.20V

Thus, this cell will give the spontaneous cell reaction with smallest E^o_{cell}

  • <u>Case 3:</u>

Here, copper is getting reduced and iron is getting oxidized.

The cell equation follows:

Cu^{2+}(aq.)+Fe(s)\rightarrow Fe^{2+}(aq.)+Cu(s)

Oxidation half reaction:  Fe(s)\rightarrow Fe^{2+}(aq.)+2e^-   E^o_{oxidation}=0.45V

Reduction half reaction:  Cu^{2+}(aq.)+2e^-\rightarrow Cu(s)   E^o_{reduction}=0.34V

E^o_{cell}=0.45+0.34=0.79V

Thus, this cell will not give the spontaneous cell reaction with smallest E^o_{cell}

Hence, the spontaneous cell reaction having smallest E^o is I_2+Cu\rightarrow Cu^{2+}+2I^-

7 0
3 years ago
Other questions:
  • The pH of normal rainwater is
    15·2 answers
  • Which characteristic is least likely to be used for predicting percent dissociation of a solid in a liquid?
    13·1 answer
  • A solution contains 0.182 molmol NaClNaCl and 0.897 molH2OmolH2O. Calculate the vapor pressure of the solution at 55 ∘C∘C. The v
    12·1 answer
  • What does pressure do to an equilibrium
    6·1 answer
  • Electronegativities of the elements Na, Al, P, and Cl follow a specific trend across the period. Based on this trend, an electro
    12·2 answers
  • Describe two ways that climate change can degrade soil in 3-4 sentences.
    7·1 answer
  • Alpha and beta particles and gamma rays are examples of:
    15·1 answer
  • What is an Independent Variable (IV)? *
    7·1 answer
  • How many grams are in a teragram?<br> 102<br> 10°<br> 10%<br> 10<br> o<br> 10<br> -9<br> 10-12<br> o
    13·1 answer
  • Is water a mineral? what do you think
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!