Answer:
Maximum shear stress is;
τ_max = 1427.12 psi
Explanation:
We are given;
Power = 2 HP = 2 × 746 Watts = 1492 W
Angular speed;ω = 450 rev/min = 450 × 2π/60 rad/s = 47.124 rad/s
Diameter;d = 1 in
We know that; power = shear stress × angular speed
So,
P = τω
τ = P/ω
τ = 1492/47.124
τ = 31.66 N.m
Converting this to lb.in, we have;
τ = 280.2146 lb.in
Maximum shear stress is given by the formula;
τ_max = (τ•d/2)/J
J is polar moment of inertia given by the formula; J = πd⁴/32
So,
τ_max = (τ•d/2)/(πd⁴/32)
This reduces to;
τ_max = (16τ)/(πd³)
Plugging in values;
τ_max = (16 × 280.2146)/((π×1³)
τ_max = 1427.12 psi
Answer: (a). E = 3.1656×10³⁴ √k/m
(b). f = 9.246 × 10¹² Hz
(c). Infrared region.
Explanation:
From Quantum Theory,
The energy of a proton is proportional to the frequency, from the equation;
E = hf
where E = energy in joules
h = planck's constant i.e. 6.626*10³⁴ Js
f = frequency
(a). from E = hf = 1 quanta
f = ω/2π
where ω = √k/m
consider 3 quanta of energy is lost;
E = 3hf = 3h/2π × √k/m
E = (3×6.626×10³⁴ / 2π) × √k/m
E = 3.1656×10³⁴ √k/m
(b). given from the question that K = 15 N/m
and mass M = 4 × 10⁻²⁶ kg
To get the frequency of the emitted photon,
Ephoton =hf = 3h/2π × √k/m (h cancels out)
f = 3h/2π × √k/m
f = 3h/2π × (√15 / 4 × 10⁻²⁶ )
f = 9.246 × 10¹² Hz
(c). The region of electromagnetic spectrum, the photon belongs to is the Infrared Spectrum because the frequency ranges from about 3 GHz to 400 THz in the electromagnetic spectrum.
load every electric circuit,regardless of where it is or how large or small, has four basic parts: an energy source (ac or dc),a conductor (wire), an electrical load (device), and at least one controller(switch)
Answer:
The lunar radiation environment, allowing scientists to determine potential impacts to astronauts and other life. It also will test models on the effects of radiation and measure radiation absorption by a type of plastic that is like human tissue. The results could aid in the development of protective technologies to help keep future lunar crew members safe. CRaTER was built and developed by Boston University and the Massachusetts Institute of Technology in Boston.