Answer:
csvadbvns egv,ekrhvybge e yrbge ngeeeeerhjyk4 r5y erhyniner mbrltjhnprihmb fghurijmb fm nbjrkfb
Explanation:
Answer:
Explanation:
Total weight being moved = 5000+1000+200
= 6200 lb .
Force applied = 700 lb
= 700 x 32 = 22400 poundal .
acceleration (a) = 22400 / 6200
= 3.613 ft /s²
To know velocity after 6 ft we apply the formula
v² = u² + 2as
v² = 0 + 2 x 3.613 x 6
43.356
v = 6.58 ft/s
Answer:
D. protruding steel rebars .. #answerwithquality #BAL
Answer:
0.5°c
Explanation:
Humidity ratio by mass can be expressed as
the ratio between the actual mass of water vapor present in moist air - to the mass of the dry air
Humidity ratio is normally expressed in kilograms (or pounds) of water vapor per kilogram (or pound) of dry air.
Humidity ratio expressed by mass:
x = mw / ma (1)
where
x = humidity ratio (kgwater/kgdry_air, lbwater/lbdry_air)
mw = mass of water vapor (kg, lb)
ma = mass of dry air (kg, lb)
It can be as:
x = 0.005 (100) / [(100 - 100)]
x = 0.005 x 100 / (100 - 100)
x = 0.005 x 100 / 0
x = 0.5°c
So the temperature to which atmospheric air must be cooled in order to have humidity ratio of 0.005 lb/lb is 0.5°c
The expression of V(m³)=e^(t(s)) to make V in in³ and t in minutes is;
V(in³) = (¹/₆₁₀₂₄)a
We are given that;
Volume of microbial culture is observed to increase according to the formula;
V = e^(t)
where;
t is in seconds
V is in m³
We want to now express V in in³ and t in minutes.
Now, from conversions;
1 m³ = 61024 in³
Also; 1 second = 1/60 minutes
according to formula for exponential decay, we know that;
V = ae^(bt)
Thus, we have;
61024V = ae^(¹/₆₀b(t(h))
V(in³) = (¹/₆₁₀₂₄)a
Read more about subject of formula at; brainly.com/question/790938